Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy
Vipin Rawat, Patrick DeLear, Prarthana Prashanth, Mete Emir Ozgurses, Anteneh Tebeje, Philippa A. Burns, Kelly O. Conger, Christopher Solís, Yasir Hasnain, Anna Novikova, Jennifer E. Endress, Paloma González-Sánchez, Wentao Dong, Greg Stephanopoulos, Gina M. DeNicola, Isaac S. Harris, David Sept, Frank M. Mason, Jonathan L. Coloff
Vipin Rawat, Patrick DeLear, Prarthana Prashanth, Mete Emir Ozgurses, Anteneh Tebeje, Philippa A. Burns, Kelly O. Conger, Christopher Solís, Yasir Hasnain, Anna Novikova, Jennifer E. Endress, Paloma González-Sánchez, Wentao Dong, Greg Stephanopoulos, Gina M. DeNicola, Isaac S. Harris, David Sept, Frank M. Mason, Jonathan L. Coloff
View: Text | PDF
Research Article Cell biology Oncology

Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy

  • Text
  • PDF
Abstract

The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.

Authors

Vipin Rawat, Patrick DeLear, Prarthana Prashanth, Mete Emir Ozgurses, Anteneh Tebeje, Philippa A. Burns, Kelly O. Conger, Christopher Solís, Yasir Hasnain, Anna Novikova, Jennifer E. Endress, Paloma González-Sánchez, Wentao Dong, Greg Stephanopoulos, Gina M. DeNicola, Isaac S. Harris, David Sept, Frank M. Mason, Jonathan L. Coloff

×

Full Text PDF

Download PDF (1.76 MB)

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts