Drug-induced liver injury (DILI), especially acetaminophen overdose, is the leading cause of acute liver failure. Pregnane X receptor (PXR) is a nuclear receptor and the master regulator of drug metabolism. Aberrant activation of PXR plays a pathogenic role in the acetaminophen hepatotoxicity. Here, we aimed to examine the S-nitrosylation of PXR (SNO-PXR) in response to acetaminophen. We found that PXR was S-nitrosylated in hepatocytes and the mouse livers after exposure to acetaminophen or S-nitrosoglutathione (GSNO). Mass spectrometry and site-directed mutagenesis identified the cysteine 307 as the primary residue for S-nitrosylation (SNO) modification. In hepatocytes, SNO suppressed both agonist-induced (rifampicin and SR12813) and constitutively active PXR (VP-PXR, a human PXR fused to the minimal transactivator domain of the herpes virus transcription factor VP16) activations. Furthermore, in acetaminophen-overdosed mouse livers, PXR protein was decreased at the centrilobular regions overlapping with increased SNO. In PXR–/– mice, replenishing the livers with the SNO-deficient PXR significantly aggravated hepatic necrosis, increased HMGB1 release, and exacerbated liver injury and inflammation. Particularly, we demonstrated that S-nitrosoglutathione reductase (GSNOR) inhibitor N6022 promoted hepatoprotection by increasing the levels of SNO-PXR. In conclusion, PXR is posttranslationally modified by SNO in hepatocytes in response to acetaminophen. This modification mitigated the acetaminophen-induced PXR hyperactivity. It may serve as a target for therapeutical intervention.
Qi Cui, Tingting Jiang, Xinya Xie, Haodong Wang, Lei Qian, Yanyan Cheng, Qiang Li, Tingxu Lu, Qinyu Yao, Jia Liu, Baochang Lai, Chang Chen, Lei Xiao, Nanping Wang
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 915 | 339 |
167 | 119 | |
Figure | 228 | 18 |
Supplemental data | 58 | 22 |
Citation downloads | 50 | 0 |
Totals | 1,418 | 498 |
Total Views | 1,916 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.