Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Dopamine-inhibited POMCDrd2+ neurons in the ARC acutely regulate feeding and body temperature
Isabella Gaziano, … , Peter Kloppenburg, Jens C. Brüning
Isabella Gaziano, … , Peter Kloppenburg, Jens C. Brüning
Published November 8, 2022
Citation Information: JCI Insight. 2022;7(21):e162753. https://doi.org/10.1172/jci.insight.162753.
View: Text | PDF
Research Article Endocrinology Neuroscience

Dopamine-inhibited POMCDrd2+ neurons in the ARC acutely regulate feeding and body temperature

  • Text
  • PDF
Abstract

Dopamine acts on neurons in the arcuate nucleus (ARC) of the hypothalamus, which controls homeostatic feeding responses. Here we demonstrate a differential enrichment of dopamine receptor 1 (Drd1) expression in food intake–promoting agouti related peptide (AgRP)/neuropeptide Y (NPY) neurons and a large proportion of Drd2-expressing anorexigenic proopiomelanocortin (POMC) neurons. Owing to the nature of these receptors, this translates into a predominant activation of AgRP/NPY neurons upon dopamine stimulation and a larger proportion of dopamine-inhibited POMC neurons. Employing intersectional targeting of Drd2-expressing POMC neurons, we reveal that dopamine-mediated POMC neuron inhibition is Drd2 dependent and that POMCDrd2+ neurons exhibit differential expression of neuropeptide signaling mediators compared with the global POMC neuron population, which manifests in enhanced somatostatin responsiveness of POMCDrd2+ neurons. Selective chemogenetic activation of POMCDrd2+ neurons uncovered their ability to acutely suppress feeding and to preserve body temperature in fasted mice. Collectively, the present study provides the molecular and functional characterization of POMCDrd2+ neurons and aids our understanding of dopamine-dependent control of homeostatic energy-regulatory neurocircuits.

Authors

Isabella Gaziano, Svenja Corneliussen, Nasim Biglari, René Neuhaus, Linyan Shen, Tamara Sotelo-Hitschfeld, Paul Klemm, Lukas Steuernagel, Alain J. De Solis, Weiyi Chen, F. Thomas Wunderlich, Peter Kloppenburg, Jens C. Brüning

×

Full Text PDF | Download (19.07 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts