Abstract

Dopamine acts on neurons in the arcuate nucleus (ARC) of the hypothalamus, which controls homeostatic feeding responses. Here we demonstrate a differential enrichment of dopamine receptor 1 (Drd1) expression in food intake–promoting agouti related peptide (AgRP)/neuropeptide Y (NPY) neurons and a large proportion of Drd2-expressing anorexigenic proopiomelanocortin (POMC) neurons. Owing to the nature of these receptors, this translates into a predominant activation of AgRP/NPY neurons upon dopamine stimulation and a larger proportion of dopamine-inhibited POMC neurons. Employing intersectional targeting of Drd2-expressing POMC neurons, we reveal that dopamine-mediated POMC neuron inhibition is Drd2 dependent and that POMCDrd2+ neurons exhibit differential expression of neuropeptide signaling mediators compared with the global POMC neuron population, which manifests in enhanced somatostatin responsiveness of POMCDrd2+ neurons. Selective chemogenetic activation of POMCDrd2+ neurons uncovered their ability to acutely suppress feeding and to preserve body temperature in fasted mice. Collectively, the present study provides the molecular and functional characterization of POMCDrd2+ neurons and aids our understanding of dopamine-dependent control of homeostatic energy-regulatory neurocircuits.

Authors

Isabella Gaziano, Svenja Corneliussen, Nasim Biglari, René Neuhaus, Linyan Shen, Tamara Sotelo-Hitschfeld, Paul Klemm, Lukas Steuernagel, Alain J. De Solis, Weiyi Chen, F. Thomas Wunderlich, Peter Kloppenburg, Jens C. Brüning

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement