Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Single-nucleus RNA-Seq reveals singular gene signatures of human ductal cells during adaptation to insulin resistance
Ercument Dirice, … , Jiang Hu, Rohit N. Kulkarni
Ercument Dirice, … , Jiang Hu, Rohit N. Kulkarni
Published July 12, 2022
Citation Information: JCI Insight. 2022;7(16):e153877. https://doi.org/10.1172/jci.insight.153877.
View: Text | PDF
Research Article Development Endocrinology Article has an altmetric score of 10

Single-nucleus RNA-Seq reveals singular gene signatures of human ductal cells during adaptation to insulin resistance

  • Text
  • PDF
Abstract

Adaptation to increased insulin demand is mediated by β cell proliferation and neogenesis, among other mechanisms. Although it is known that pancreatic β cells can arise from ductal progenitors, these observations have been limited mostly to the neonatal period. We have recently reported that the duct is a source of insulin-secreting cells in adult insulin-resistant states. To further explore the signaling pathways underlying the dynamic β cell reserve during insulin resistance, we undertook human islet and duct transplantations under the kidney capsule of immunodeficient NOD/SCID-γ (NSG) mouse models that were pregnant, were insulin-resistant, or had insulin resistance superimposed upon pregnancy (insulin resistance + pregnancy), followed by single-nucleus RNA-Seq (snRNA-Seq) on snap-frozen graft samples. We observed an upregulation of proliferation markers (e.g., NEAT1) and expression of islet endocrine cell markers (e.g., GCG and PPY), as well as mature β cell markers (e.g., INS), in transplanted human duct grafts in response to high insulin demand. We also noted downregulation of ductal cell identity genes (e.g., KRT19 and ONECUT2) coupled with upregulation of β cell development and insulin signaling pathways. These results indicate that subsets of ductal cells are able to gain β cell identity and reflect a form of compensation during the adaptation to insulin resistance in both physiological and pathological states.

Authors

Ercument Dirice, Giorgio Basile, Sevim Kahraman, Danielle Diegisser, Jiang Hu, Rohit N. Kulkarni

×

Full Text PDF

Download PDF (2.08 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Posted by 16 X users
11 readers on Mendeley
See more details