Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

GATA4 induces liver fibrosis regression by deactivating hepatic stellate cells
Noelia Arroyo, … , David A. Cano, Anabel Rojas
Noelia Arroyo, … , David A. Cano, Anabel Rojas
Published October 26, 2021
Citation Information: JCI Insight. 2021;6(23):e150059. https://doi.org/10.1172/jci.insight.150059.
View: Text | PDF
Research Article Cell biology Gastroenterology

GATA4 induces liver fibrosis regression by deactivating hepatic stellate cells

  • Text
  • PDF
Abstract

In response to liver injury, hepatic stellate cells activate and acquire proliferative and contractile features. The regression of liver fibrosis appears to involve the clearance of activated hepatic stellate cells, either by apoptosis or by reversion toward a quiescent-like state, a process called deactivation. Thus, deactivation of active hepatic stellate cells has emerged as a novel and promising therapeutic approach for liver fibrosis. However, our knowledge of the master regulators involved in the deactivation and/or activation of fibrotic hepatic stellate cells is still limited. The transcription factor GATA4 has been previously shown to play an important role in embryonic hepatic stellate cell quiescence. In this work, we show that lack of GATA4 in adult mice caused hepatic stellate cell activation and, consequently, liver fibrosis. During regression of liver fibrosis, Gata4 was reexpressed in deactivated hepatic stellate cells. Overexpression of Gata4 in hepatic stellate cells promoted liver fibrosis regression in CCl4-treated mice. GATA4 induced changes in the expression of fibrogenic and antifibrogenic genes, promoting hepatic stellate cell deactivation. Finally, we show that GATA4 directly repressed EPAS1 transcription in hepatic stellate cells and that stabilization of the HIF2α protein in hepatic stellate cells leads to liver fibrosis.

Authors

Noelia Arroyo, Laura Villamayor, Irene Díaz, Rita Carmona, Mireia Ramos-Rodríguez, Ramón Muñoz-Chápuli, Lorenzo Pasquali, Miguel G. Toscano, Franz Martín, David A. Cano, Anabel Rojas

×

Total citations by year

Year: 2025 2024 2023 2022 Total
Citations: 4 8 6 3 21
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2025 (4)

Title and authors Publication Year
Spinal cord injury induces transient activation of hepatic stellate cells in rat liver
Fernandez-Canadas I, Badajoz A, Jimenez-Gonzalez J, Wirenfeldt M, Paniagua-Torija B, Bravo-Jimenez C, Del Cerro M, Arevalo-Martin A, Garcia-Ovejero D
Scientific Reports 2025
Trajectory analysis of hepatic stellate cell differentiation reveals metabolic regulation of cell commitment and fibrosis
Martínez García de la Torre RA, Vallverdú J, Xu Z, Ariño S, Ferrer-Lorente R, Zanatto L, Mercado-Gómez M, Aguilar-Bravo B, Ruiz-Blázquez P, Fernandez- Fernandez M, Navarro-Gascon A, Blasco-Roset A, Sànchez-Fernàndez-de-Landa P, Pera J, Romero-Moya D, Ayuso Garcia P, Martínez Sánchez C, Sererols Viñas L, Cantallops Vilà P, Cárcamo Giráldez CI, McQuillin A, Morgan MY, Moya-Rull D, Montserrat N, Eberlé D, Staels B, Antoine B, Azkargorta M, Lozano JJ, Martínez-Chantar ML, Giorgetti A, Elortza F, Planavila A, Varela-Rey M, Woodhoo A, Zorzano A, Graupera I, Moles A, Coll M, Affo S, Sancho-Bru P
Nature Communications 2025
Role of integrin α4 in the inhibition of fibrosis in activated hepatic stellate cells by Periplaneta americana extract
Fang Y, Liu Y, Li D, Miu Y, Chen K, Zhou J, Xie L, Chen X, Wu J, Zhu Y, Lv L, Li W
Frontiers in Pharmacology 2025
Embryonic lethal abnormal vision like 1-stabilized histone deacetylase 6 promotes hepatic stellate cell activation to accelerate liver fibrosis progression through ribosomal protein S5 downregulation
Wang Q, Zhang W, Wang J, Zhang L, Qiu Y, Cheng Y
CytoJournal 2025

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts