Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
Vagal gut-brain signaling mediates amygdaloid plasticity, affect and pain in a functional dyspepsia model
Zachary A. Cordner, … , Timothy H. Moran, Pankaj J. Pasricha
Zachary A. Cordner, … , Timothy H. Moran, Pankaj J. Pasricha
Published February 16, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.144046.
View: Text | PDF
Research In-Press Preview Gastroenterology Neuroscience

Vagal gut-brain signaling mediates amygdaloid plasticity, affect and pain in a functional dyspepsia model

  • Text
  • PDF
Abstract

Functional dyspepsia (FD) is associated with both chronic gastrointestinal distress and anxiety and depression. Here, we hypothesized that aberrant gastric signals, transmitted by the vagus nerve, may alter key brain regions modulating affective and pain behavior. Using a previously validated rat model of FD characterized by gastric hypersensitivity, depression- and anxiety-like behavior, we found that vagal activity in response to gastric distention was increased in FD rats. The FD phenotype was associated with gastric mast cell hyperplasia and increased expression of corticotrophin-releasing factor (CRF) and decreased brain-derived neurotrophic factor in the central amygdala. Subdiaphragmatic vagotomy reversed these changes and restored affective behavior to that of controls. Vagotomy partially attenuated pain responses to gastric distention, which may be mediated by central reflexes in the periaqueductal gray, as determined by local injection of lidocaine. Ketotifen, a mast cell stabilizer, reduced vagal hypersensitivity, normalized affective behavior and attenuated gastric hyperalgesia. In conclusion, vagal activity, partially driven by gastric mast cells, induces long-lasting changes in CRF signaling in the amygdala that may be responsible for enhanced pain and anxiety- and depression-like behaviors. Together, these results support a “bottom-up” pathway involving the gut-brain axis in the pathogenesis of both gastric pain and psychiatric co-morbidity in FD.

Authors

Zachary A. Cordner, Qian Li, Liansheng Liu, Kellie L. Tamashiro, Aditi Bhargava, Timothy H. Moran, Pankaj J. Pasricha

×

Full Text PDF | Download (4.18 MB)

Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts