Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
ERRγ suppression by Sirt6 alleviates cholestatic liver injury and fibrosis
Lihua Hao, … , Eun Ju Bae, Byung-Hyun Park
Lihua Hao, … , Eun Ju Bae, Byung-Hyun Park
Published July 23, 2020
Citation Information: JCI Insight. 2020;5(17):e137566. https://doi.org/10.1172/jci.insight.137566.
View: Text | PDF
Research Article Hepatology Metabolism

ERRγ suppression by Sirt6 alleviates cholestatic liver injury and fibrosis

  • Text
  • PDF
Abstract

Orphan nuclear receptor estrogen-related receptor γ (ERRγ) stimulates bile acid production; however, the role and the regulatory mechanism of ERRγ in cholestatic liver disease are largely unknown. This study identifies that Sirt6 is a deacetylase of ERRγ and suggests a potentially novel mechanism by which Sirt6 activation alleviates cholestatic liver damage and fibrosis through regulating ERRγ. We observed that hepatic expression of Sirt6 is repressed, whereas hepatic expression of ERRγ is upregulated in murine cholestasis models. Hepatocyte-specific Sirt6-KO mice were more severely injured after a bile duct ligation (BDL) than WT mice, and adenoviral reexpression of Sirt6 reversed liver damage and fibrosis as demonstrated by biochemical and histological analyses. Mechanistically, Sirt6 deacetylated ERRγ, thereby destabilizing ERRγ and inhibiting its transcriptional activity. Elimination of hepatic ERRγ using Ad-shERRγ abolished the deleterious effects of Sirt6 deficiency, whereas ERRγ overexpression aggravated cholestatic liver injury. Administration of a Sirt6 deacetylase activator prevented BDL-induced liver damage and fibrosis. In patients with cholestasis, Sirt6 expression was decreased, whereas total ERRγ and acetylated ERRγ levels were increased, confirming negative regulation of ERRγ by Sirt6. Thus, Sirt6 activation represents a potentially novel therapeutic strategy for treating cholestatic liver injury.

Authors

Lihua Hao, In Hyuk Bang, Jie Wang, Yuancheng Mao, Jae Do Yang, Soon-Young Na, Jeong Kon Seo, Hueng-Sik Choi, Eun Ju Bae, Byung-Hyun Park

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (920.55 KB)

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts