Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Preexisting subtype immunodominance shapes memory B cell recall response to influenza vaccination
Rodrigo B. Abreu, Greg A. Kirchenbaum, Emily F. Clutter, Giuseppe A. Sautto, Ted M. Ross
Rodrigo B. Abreu, Greg A. Kirchenbaum, Emily F. Clutter, Giuseppe A. Sautto, Ted M. Ross
View: Text | PDF
Research Article Infectious disease Virology

Preexisting subtype immunodominance shapes memory B cell recall response to influenza vaccination

  • Text
  • PDF
Abstract

Influenza is a highly contagious viral pathogen with more than 200,000 cases reported in the United States during the 2017–2018 season. Annual vaccination is recommended by the World Health Organization, with the goal to reduce influenza severity and transmission. Currently available vaccines are about 60% effective, and vaccine effectiveness varies from season to season, as well as between different influenza subtypes within a single season. Immunological imprinting from early-life influenza infection can prominently shape the immune response to subsequent infections. Here, the impact of preexisting B cell memory in the response to quadrivalent influenza vaccine was assessed using blood samples collected from healthy subjects (18–85 years old) prior to and 21–28 days following influenza vaccination. Influenza vaccination increased both HA-specific antibodies and memory B cell frequency. Despite no apparent differences in antigenicity between vaccine components, most individuals were biased toward one of the vaccine strains. Specifically, responses to H3N2 were reduced in magnitude relative to the other vaccine components. Overall, this study unveils a potentially new mechanism underlying differential vaccine effectiveness against distinct influenza subtypes.

Authors

Rodrigo B. Abreu, Greg A. Kirchenbaum, Emily F. Clutter, Giuseppe A. Sautto, Ted M. Ross

×

Full Text PDF

Download PDF (5.67 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts