Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Genomic analysis of benign prostatic hyperplasia implicates cellular relandscaping in disease pathogenesis
Lance W. Middleton, … , Robert B. West, Jonathan R. Pollack
Lance W. Middleton, … , Robert B. West, Jonathan R. Pollack
Published May 16, 2019
Citation Information: JCI Insight. 2019;4(12):e129749. https://doi.org/10.1172/jci.insight.129749.
View: Text | PDF
Research Article Cell biology Oncology

Genomic analysis of benign prostatic hyperplasia implicates cellular relandscaping in disease pathogenesis

  • Text
  • PDF
Abstract

Benign prostatic hyperplasia (BPH) is the most common cause of lower urinary tract symptoms in men. Current treatments target prostate physiology rather than BPH pathophysiology and are only partially effective. Here, we applied next-generation sequencing to gain insight into BPH. By RNA-Seq, we uncovered transcriptional heterogeneity among BPH cases, where a 65-gene BPH stromal signature correlated with symptom severity. Stromal signaling molecules bone morphogenetic protein 5 (BMP5) and CXC chemokine ligand 13 (CXCL13) were enriched in BPH while estrogen-regulated pathways were depleted. Notably, BMP5’s addition to cultured prostatic myofibroblasts altered their expression profile toward a BPH profile that included the BPH stromal signature. RNA-Seq also suggested an altered cellular milieu in BPH, which we verified by immunohistochemistry and single-cell RNA-Seq. In particular, BPH tissues exhibited enrichment of myofibroblast subsets but also depletion of neuroendocrine cells and an estrogen receptor–positive fibroblast cell type residing near the epithelium. By whole-exome sequencing, we uncovered somatic single-nucleotide variants in BPH, of uncertain pathogenic significance but indicative of clonal cell expansions. Thus, genomic characterization of BPH has identified a clinically relevant stromal signature and new candidate disease pathways (including a likely role for BMP5 signaling) and reveals BPH to be not merely a hyperplasia, but rather a fundamental relandscaping of cell types.

Authors

Lance W. Middleton, Zhewei Shen, Sushama Varma, Anna S. Pollack, Xue Gong, Shirley Zhu, Chunfang Zhu, Joseph W. Foley, Sujay Vennam, Robert T. Sweeney, Karen Tu, Jewison Biscocho, Okyaz Eminaga, Rosalie Nolley, Robert Tibshirani, James D. Brooks, Robert B. West, Jonathan R. Pollack

×

Full Text PDF | Download (10.27 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts