The activation and recruitment of NK cells to the site of viral infection are crucial for virus control. However, it remains largely unknown what controls the recruitment of the activated NK cells to the infection site. In a model of intraperitoneal infection with vaccinia virus (VV), we showed that poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, is critical for NK cell recruitment to the site of infection and viral control in vivo. We further demonstrated that PARP-1 promotes the production of CCL2 and that the CCL2-CCR2 axis is essential for NK cell recruitment to the infection site. In addition, we demonstrated that peritoneal macrophages are the main producer of PARP-1–dependent CCL2 secretion. Mechanistically, PARP-1 functions as a regulator of NF-κB by promoting its nuclear translocation and binding to its response sequences in macrophages upon VV infection. Taken together, our results reveal a potentially previously unknown role for PARP-1–dependent CCL2 production in NK cell migration and viral control and may provide important insights into the design of effective NK cell–based therapies for viral infections and cancer.
Qiyang Shou, Huiying Fu, Xiaopei Huang, Yiping Yang
Despite current immunosuppressive strategies, long-term lung transplant outcomes remain poor due to rapid allogenic responses. Using a stringent mouse model of allo-airway transplantation, we identified the CCR4-ligand axis as a central node driving secondary lymphoid tissue homing and activation of the allogeneic T cells that prevent long-term allograft survival. CCR4 deficiency on transplant recipient T cells diminished allograft injury and when combined with CTLA4-Ig led to lung allograft accommodation lasting longer than in any previous study to our knowledge. Thus, we identify CCR4-ligand interactions as a central mechanism driving allogeneic transplant rejection and suggest it as a potential target to enhance long-term lung transplant survival.
Vyacheslav Palchevskiy, Ying Ying Xue, Rita Kern, Stephen S. Weigt, Aric L. Gregson, Sophie X. Song, Michael C. Fishbein, Cory M. Hogaboam, David M. Sayah, Joseph P. Lynch III, Michael P. Keane, David G. Brooks, John A. Belperio
BACKGROUND Dietary changes have led to the growing prevalence of type 2 diabetes and nonalcoholic fatty liver disease. A hallmark of both disorders is hepatic lipid accumulation, derived in part from increased de novo lipogenesis. Despite the popularity of high-protein diets for weight loss, the effect of dietary protein on de novo lipogenesis is poorly studied. We aimed to characterize the effect of dietary protein on de novo lipid synthesis.METHODS We use a 3-way crossover interventional study in healthy males to determine the effect of high-protein feeding on de novo lipogenesis, combined with in vitro models to determine the lipogenic effects of specific amino acids. The primary outcome was a change in de novo lipogenesis–associated triglycerides in response to protein feeding.RESULTS We demonstrate that high-protein feeding, rich in glutamate, increases de novo lipogenesis–associated triglycerides in plasma (1.5-fold compared with control; P < 0.0001) and liver-derived very low-density lipoprotein particles (1.8-fold; P < 0.0001) in samples from human subjects (n = 9 per group). In hepatocytes, we show that glutamate-derived carbon is incorporated into triglycerides via palmitate. In addition, supplementation with glutamate, glutamine, and leucine, but not lysine, increased triglyceride synthesis and decreased glucose uptake. Glutamate, glutamine, and leucine increased activation of protein kinase B, suggesting that induction of de novo lipogenesis occurs via the insulin signaling cascade.CONCLUSION These findings provide mechanistic insight into how select amino acids induce de novo lipogenesis and insulin resistance, suggesting that high-protein feeding to tackle diabetes and obesity requires greater consideration.FUNDING The research was supported by UK Medical Research Council grants MR/P011705/1, MC_UP_A090_1006 and MR/P01836X/1. JLG is supported by the Imperial Biomedical Research Centre, National Institute for Health Research (NIHR).
Evelina Charidemou, Tom Ashmore, Xuefei Li, Ben D. McNally, James A. West, Sonia Liggi, Matthew Harvey, Elise Orford, Julian L. Griffin
Monosomy 7 and deletion of 7q, known as del(7q), are common clonal cytogenetic abnormalities associated with high-grade myelodysplastic syndrome (MDS) arising in inherited and acquired bone marrow failure. Current nontransplant approaches to treat marrow failure may be complicated by stimulation of clonal outgrowth. To study the biological consequences of del(7q) within the context of a failing marrow, we generated induced pluripotent stem cells (iPSCs) derived from patients with Shwachman-Diamond syndrome (SDS), a bone marrow failure disorder with MDS predisposition, and genomically engineered a 7q deletion. The TGF-β pathway was the top differentially regulated pathway in transcriptomic analysis of SDS versus SDSdel(7q) iPSCs. SMAD2 phosphorylation was increased in SDS relative to wild-type cells, consistent with hyperactivation of the TGF-β pathway in SDS. Phospho-SMAD2 levels were reduced following 7q deletion in SDS cells and increased upon restoration of 7q diploidy. Inhibition of the TGF-β pathway rescued hematopoiesis in SDS iPSCs and in bone marrow hematopoietic cells from SDS patients while it had no impact on the SDSdel(7q) cells. These results identified a potential targetable vulnerability to improve hematopoiesis in an MDS predisposition syndrome and highlighted the importance of the germline context of somatic alterations to inform precision medicine approaches to therapy.
Melisa Ruiz-Gutierrez, Özge Vargel Bölükbaşı, Gabriela Alexe, Adriana G. Kotini, Kaitlyn Ballotti, Cailin E. Joyce, David W. Russell, Kimberly Stegmaier, Kasiani Myers, Carl D. Novina, Eirini P. Papapetrou, Akiko Shimamura
BACKGROUND The lymphocyte-depleting antibody alemtuzumab is a highly effective treatment for relapsing-remitting multiple sclerosis (RRMS); however, 50% of patients develop novel autoimmunity after treatment. Most at risk are individuals who reconstitute their T cell pool by proliferating residual cells, rather than producing new T cells in the thymus, raising the possibility that autoimmunity might be prevented by increasing thymopoiesis. Keratinocyte growth factor (palifermin) promotes thymopoiesis in nonhuman primates.METHODS Following a dose tolerability substudy, individuals with RRMS (duration ≤10 years; expanded disability status scale ≤5.0, with ≥2 relapses in the previous 2 years) were randomized to placebo or 180 μg/kg/d palifermin, given for 3 days immediately before and after each cycle of alemtuzumab, with repeat doses at month 1 (M1) and M3. The interim primary endpoint was naive CD4+ T cell count at M6. Exploratory endpoints included number of recent thymic emigrants (RTEs) and signal joint T cell receptor excision circles/ml (sjTRECs/ml) of blood. The trial’s primary endpoint was incidence of autoimmunity at M30.RESULTS At M6, individuals receiving palifermin had fewer naive CD4+ T cells (2.229 × 107/l vs. 7.733 × 107/l; P = 0.007), RTEs (16% vs. 34%), and sjTRECs/ml (1100 vs. 3396), leading to protocol-defined termination of recruitment. No difference was observed in the rate of autoimmunity between the 2 groups.CONCLUSION In contrast with animal studies, palifermin reduced thymopoiesis in our patients. These results offer a note of caution to those using palifermin to promote thymopoiesis in other settings, particularly in the oncology/hematology setting, where alemtuzumab is often used as part of the conditioning regime.TRIAL REGISTRATION ClinicalTrials.gov NCT01712945.FUNDING MRC and Moulton Charitable Trust.
Alasdair J. Coles, Laura Azzopardi, Onajite Kousin-Ezewu, Harpreet Kaur Mullay, Sara A.J. Thompson, Lorna Jarvis, Jessica Davies, Sarah Howlett, Daniel Rainbow, Judith Babar, Timothy J. Sadler, J. William L. Brown, Edward Needham, Karen May, Zoya G. Georgieva, Adam E. Handel, Stefano Maio, Mary Deadman, Ioanna Rota, Georg Holländer, Sarah Dawson, David Jayne, Ruth Seggewiss-Bernhardt, Daniel C. Douek, John D. Isaacs, Joanne L. Jones
Susceptibility to chronic beryllium (Be) disease (CBD) is linked to HLA-DP molecules possessing a glutamic acid at the 69th position of the β-chain (βGlu69), with the most prevalent βGlu69-containing molecule being HLA-DP2. We have previously shown that HLA-DP2–transgenic (HLA-DP2–Tg) mice exposed to Be oxide (BeO) develop mononuclear infiltrates in a peribronchovascular distribution and a beryllium-specific, HLA-DP2–restricted CD4+ T cell response. In addition to T cells, B cells constituted a major portion of infiltrated leukocytes in the lung of BeO-exposed HLA-DP2–Tg mice and sequester BeO particles within ectopic lymphoid aggregates and granulomas. B cell depletion was associated with a loss of lymphoid aggregates and granulomas as well as a significant increase in lung injury in BeO-exposed mice. The protective role of B cells was innate in origin, and BeO-induced B cell recruitment to the lung was dependent on MyD88 signaling. Similar to BeO-exposed HLA-DP2–Tg mice, B cells also accumulate in the lungs of CBD subjects, located at the periphery and surrounding the granuloma. Overall, our data suggest what we believe is a novel modulatory role for B cells in the protection of the lung against sterile particulate exposure, with B cell recruitment to the inflamed lung occurring in an antigen-independent and MyD88-dependent manner.
Shaikh M. Atif, Douglas G. Mack, Amy S. McKee, Javier Rangel-Moreno, Allison K. Martin, Andrew Getahun, Lisa A. Maier, John C. Cambier, Rubin Tuder, Andrew P. Fontenot
African Americans develop end-stage renal disease at a higher rate compared with European Americans due to 2 polymorphisms (G1 and G2 risk variants) in the apolipoprotein L1 (APOL1) gene common in people of African ancestry. Although this compelling genetic evidence provides an exciting opportunity for personalized medicine in chronic kidney disease, drug discovery efforts have been greatly hindered by the fact that APOL1 expression is lacking in rodents. Here, we describe a potentially novel physiologically relevant genomic mouse model of APOL1-associated renal disease that expresses human APOL1 from the endogenous human promoter, resulting in expression in similar tissues and at similar relative levels as humans. While naive APOL1-transgenic mice did not exhibit a renal disease phenotype, administration of IFN-γ was sufficient to robustly induce proteinuria only in APOL1 G1 mice, despite inducing kidney APOL1 expression in both G0 and G1 mice, serving as a clinically relevant “second hit.” Treatment of APOL1 G1 mice with IONIS-APOL1Rx, an antisense oligonucleotide (ASO) targeting APOL1 mRNA, prior to IFN-γ challenge robustly and dose-dependently inhibited kidney and liver APOL1 expression and protected against IFN-γ–induced proteinuria, indicating that the disease-relevant cell types are sensitive to ASO treatment. Therefore, IONIS-APOL1Rx may be an effective therapeutic for APOL1 nephropathies and warrants further development.
Mariam Aghajan, Sheri L. Booten, Magnus Althage, Christopher E. Hart, Anette Ericsson, Ingela Maxvall, Joseph Ochaba, Angela Menschik-Lundin, Judith Hartleib, Steven Kuntz, Danielle Gattis, Christine Ahlström, Andrew T. Watt, Jeffery A. Engelhardt, Brett P. Monia, Maria Chiara Magnone, Shuling Guo
The increased formation of methylglyoxal (MG) under hyperglycemia is associated with the development of microvascular complications in patients with diabetes mellitus; however, the effects of elevated MG levels in vivo are poorly understood. In zebrafish, a transient knockdown of glyoxalase 1, the main MG detoxifying system, led to the elevation of endogenous MG levels and blood vessel alterations. To evaluate effects of a permanent knockout of glyoxalase 1 in vivo, glo1–/– zebrafish mutants were generated using CRISPR/Cas9. In addition, a diet-induced–obesity zebrafish model was used to analyze glo1–/– zebrafish under high nutrient intake. Glo1–/– zebrafish survived until adulthood without growth deficit and showed increased tissue MG concentrations. Impaired glucose tolerance developed in adult glo1–/– zebrafish and was indicated by increased postprandial blood glucose levels and postprandial S6 kinase activation. Challenged by an overfeeding period, fasting blood glucose levels in glo1–/– zebrafish were increased which translated into retinal blood vessel alterations. Thus, the data have identified a defective MG detoxification as a metabolic prerequisite and glyoxalase 1 alterations as a genetic susceptibility to the development of type 2 diabetes mellitus under high nutrition intake.
Elisabeth Lodd, Lucas M. Wiggenhauser, Jakob Morgenstern, Thomas H. Fleming, Gernot Poschet, Michael Büttner, Christoph T. Tabler, David P. Wohlfart, Peter P. Nawroth, Jens Kroll
BACKGROUND The hereditary transthyretin (TTR) amyloidoses are a group of diseases for which several disease-modifying treatments are now available. Long-term effectiveness of these therapies is not yet fully known. Moreover, the existence of alternative therapies has resulted in an urgent need to identify patient characteristics that predict response to each therapy.METHODS We carried out a retrospective cohort study of 210 patients with hereditary TTR amyloidosis treated with the kinetic stabilizer tafamidis (20 mg qd). These patients were followed for a period of 18–66 months, after which they were classified by an expert as responders, partial responders, or nonresponders. Correlations between baseline demographic and clinical characteristics, as well as plasma biomarkers and response to therapy, were investigated.RESULTS 34% of patients exhibited an almost complete arrest of disease progression (classified by an expert as responders); 36% had a partial to complete arrest in progression of some but not all disease components (partial responders); whereas the remaining 30% continued progressing despite therapy (nonresponders). We determined that disease severity, sex, and native TTR concentration at the outset of treatment were the most relevant predictors of response to tafamidis. Plasma tafamidis concentration after 12 months of therapy was also a predictor of response for male patients. Using these variables, we built a model to predict responsiveness to tafamidis.CONCLUSION Our study indicates long-term effectiveness for tafamidis, a kinetic stabilizer approved for the treatment of hereditary TTR amyloidosis. Moreover, we created a predictive model that can be potentially used in the clinical setting to inform patients and clinicians in their therapeutic decisions.
Cecília Monteiro, Jaleh S. Mesgazardeh, João Anselmo, Joana Fernandes, Marta Novais, Carla Rodrigues, Gabriel J. Brighty, David L. Powers, Evan T. Powers, Teresa Coelho, Jeffery W. Kelly
During chronic HIV infection, immune cells become increasingly dysfunctional and exhausted. Little is known about how immune functions are restored after initiation of antiretroviral therapy (ART). In this study, we assessed cellular and metabolic activity and evaluated the effect of individual antiretrovirals on cellular subsets ex vivo in ART-treated and treatment-naive chronically HIV-infected individuals. We observed that cellular respiration was significantly decreased in most immune cells in chronic HIV infection. The respiration was correlated to immune activation and the inhibitory receptor programmed cell death 1 on CD8+ T cells. ART restored the metabolic phenotype, but the respiratory impairment persisted in CD4+ T cells. This was particularly the case for individuals receiving integrase strand transfer inhibitors. CD4+ T cells from these individuals showed a significant reduction in ex vivo proliferative capacity compared with individuals treated with protease inhibitors or nonnucleoside reverse transcriptase inhibitors. We noticed a significant decrease in respiration of cells treated with dolutegravir (DLG) or elvitegravir (EVG) and a switch from polyfunctional to TNF-α–dominated “stress” immune response. There was no effect on glycolysis, consistent with impaired mitochondrial function. We detected increased levels of mitochondrial ROS and mitochondrial mass. These findings indicate that EVG and DLG use is associated with slow proliferation and impaired respiration with underlying mitochondrial dysfunction, resulting in overall decreased cellular function in CD4+ T cells.
Marek Korencak, Morgan Byrne, Enrico Richter, Bruce T. Schultz, Patrick Juszczak, Julie A. Ake, Anuradha Ganesan, Jason F. Okulicz, Merlin L. Robb, Buena de los Reyes, Sandra Winning, Joachim Fandrey, Timothy H. Burgess, Stefan Esser, Nelson L. Michael, Brian K. Agan, Hendrik Streeck
Pulmonary fibrosis is a devastating disease characterized by accumulation of activated fibroblasts and scarring in the lung. While fibroblast activation in physiological wound repair reverses spontaneously, fibroblast activation in fibrosis is aberrantly sustained. Here we identified histone 3 lysine 9 methylation (H3K9me) as a critical epigenetic modification that sustains fibroblast activation by repressing the transcription of genes essential to returning lung fibroblasts to an inactive state. We show that the histone methyltransferase G9a (EHMT2) and chromobox homolog 5 (CBX5, also known as HP1α), which deposit H3K9me marks and assemble an associated repressor complex, respectively, are essential to initiation and maintenance of fibroblast activation specifically through epigenetic repression of peroxisome proliferator–activated receptor γ coactivator 1 α gene (PPARGC1A, encoding PGC1α). Both TGF-β and increased matrix stiffness potently inhibit PGC1α expression in lung fibroblasts through engagement of the CBX5/G9a pathway. Inhibition of the CBX5/G9a pathway in fibroblasts elevates PGC1α, attenuates TGF-β– and matrix stiffness–promoted H3K9 methylation, and reduces collagen accumulation in the lungs following bleomycin injury. Our results demonstrate that epigenetic silencing mediated by H3K9 methylation is essential for both biochemical and biomechanical fibroblast activation and that targeting this epigenetic pathway may provide therapeutic benefit by returning lung fibroblasts to quiescence.
Giovanni Ligresti, Nunzia Caporarello, Jeffrey A. Meridew, Dakota L. Jones, Qi Tan, Kyoung Moo Choi, Andrew J. Haak, Aja Aravamudhan, Anja C. Roden, Y.S. Prakash, Gwen Lomberk, Raul A. Urrutia, Daniel J. Tschumperlin
Atrial dysfunction is highly prevalent and associated with increased severity of heart failure. While rapid excitation-contraction coupling depends on axial junctions in atrial myocytes, the molecular basis of atrial loss of function remains unclear. We identified approximately 5-fold lower junctophilin-2 levels in atrial compared with ventricular tissue in mouse and human hearts. In atrial myocytes, this resulted in subcellular expression of large junctophilin-2 clusters at axial junctions, together with highly phosphorylated ryanodine receptor (RyR2) channels. To investigate the contribution of junctophilin-2 to atrial pathology in adult hearts, we developed a cardiomyocyte-selective junctophilin-2–knockdown model with 0 mortality. Junctophilin-2 knockdown in mice disrupted atrial RyR2 clustering and contractility without hypertrophy or interstitial fibrosis. In contrast, aortic pressure overload resulted in left atrial hypertrophy with decreased junctophilin-2 and RyR2 expression, disrupted axial junctions, and atrial fibrosis. Whereas pressure overload accrued atrial dysfunction and heart failure with 40% mortality, additional junctophilin-2 knockdown greatly exacerbated atrial dysfunction with 100% mortality. Strikingly, transgenic junctophilin-2 overexpression restored atrial contractility and survival through de novo biogenesis of polyadic junctional membrane complexes maintained after pressure overload. Our data show a central role of junctophilin-2 cluster disruption in atrial hypertrophy and identify transgenic augmentation of junctophilin-2 as a disease-mitigating rationale to improve atrial dysfunction and prevent heart failure deterioration.
Sören Brandenburg, Jan Pawlowitz, Benjamin Eikenbusch, Jonas Peper, Tobias Kohl, Gyuzel Y. Mitronova, Samuel Sossalla, Gerd Hasenfuss, Xander H.T. Wehrens, Peter Kohl, Eva A. Rog-Zielinska, Stephan E. Lehnart
Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by muscle weakness and caused by pathogenic autoantibodies that bind to membrane proteins at the neuromuscular junction. Most patients have autoantibodies against the acetylcholine receptor (AChR), but a subset of patients have autoantibodies against muscle-specific tyrosine kinase (MuSK) instead. MuSK is an essential component of the pathway responsible for synaptic differentiation, which is activated by nerve-released agrin. Through binding MuSK, serum-derived autoantibodies inhibit agrin-induced MuSK autophosphorylation, impair clustering of AChRs, and block neuromuscular transmission. We sought to establish individual MuSK autoantibody clones so that the autoimmune mechanisms could be better understood. We isolated MuSK autoantibody-expressing B cells from 6 MuSK MG patients using a fluorescently tagged MuSK antigen multimer, then generated a panel of human monoclonal autoantibodies (mAbs) from these cells. Here we focused on 3 highly specific mAbs that bound quantitatively to MuSK in solution, to MuSK-expressing HEK cells, and at mouse neuromuscular junctions, where they colocalized with AChRs. These 3 IgG isotype mAbs (2 IgG4 and 1 IgG3 subclass) recognized the Ig-like domain 2 of MuSK. The mAbs inhibited AChR clustering, but intriguingly, they enhanced rather than inhibited MuSK phosphorylation, which suggests an alternative mechanism for inhibiting AChR clustering.
Kazushiro Takata, Panos Stathopoulos, Michelangelo Cao, Marina Mané-Damas, Miriam L. Fichtner, Erik S. Benotti, Leslie Jacobson, Patrick Waters, Sarosh R. Irani, Pilar Martinez-Martinez, David Beeson, Mario Losen, Angela Vincent, Richard J. Nowak, Kevin C. O’Connor
Th1 and Th17 are important in the pathogenesis of autoimmune diseases and they depend on glycolysis as a source of energy. T cell antigen receptor signaling phosphorylates a serine/threonine kinase, calcium/calmodulin–dependent protein kinase IV (CaMK4), and promotes glycolysis. Based on these findings we hypothesized that CaMK4 promotes glycolysis. Camk4-deficient CD4+ T cells and cells treated with a CaMK4 inhibitor had less glycolysis compared with their counterparts. Pull-down of CaMK4 and mass spectrometry identified pyruvate kinase muscle isozyme (PKM), the final rate-limiting enzyme in glycolysis, as a binding partner. Coimmunoprecipitation and Western blotting showed that CaMK4 interacts directly with PKM2. Camk4-deficient CD4+ T cells displayed decreased pyruvate kinase activity. Silencing or pharmacological inhibition of PKM2 reduced glycolysis and in vitro differentiation to Th1 and Th17 cells, while PKM2 overexpression restored Th17 cell differentiation. Treatment with a PKM2 inhibitor ameliorated experimental autoimmune encephalomyelitis and CD4+ T cells treated with PKM2 inhibitor or Pkm2-shRNA caused limited disease activity in an adoptive cell transfer model of experimental autoimmune encephalomyelitis. Our data demonstrate that CaMK4 binds to PKM2 and promotes its activity, which is requisite for Th1 and Th17 differentiation in vitro and in vivo. PKM2 represents a therapeutic target for T cell–dependent autoimmune diseases.
Michihito Kono, Kayaho Maeda, Irina Stocton-Gavanescu, Wenliang Pan, Masataka Umeda, Eri Katsuyama, Catalina Burbano, Seo Yeon K. Orite, Milena Vukelic, Maria G. Tsokos, Nobuya Yoshida, George C. Tsokos
Inhibition of Bruton tyrosine kinase (BTK) is a breakthrough therapy for certain B cell lymphomas and B cell chronic lymphatic leukemia. Covalent BTK inhibitors (e.g., ibrutinib) bind to cysteine C481, and mutations of this residue confer clinical resistance. This has led to the development of noncovalent BTK inhibitors that do not require binding to cysteine C481. These new compounds are now entering clinical trials. In a systematic BTK mutagenesis screen, we identify residues that are critical for the activity of noncovalent inhibitors. These include a gatekeeper residue (T474) and mutations in the kinase domain. Strikingly, co-occurrence of gatekeeper and kinase domain lesions (L512M, E513G, F517L, L547P) in cis results in a 10- to 15-fold gain of BTK kinase activity and de novo transforming potential in vitro and in vivo. Computational BTK structure analyses reveal how these lesions disrupt an intramolecular mechanism that attenuates BTK activation. Our findings anticipate clinical resistance mechanisms to a new class of noncovalent BTK inhibitors and reveal intramolecular mechanisms that constrain BTK’s transforming potential.
Shenqiu Wang, Sayan Mondal, Chunying Zhao, Marjan Berishaj, Phani Ghanakota, Connie Lee Batlevi, Ahmet Dogan, Venkatraman E. Seshan, Robert Abel, Michael R. Green, Anas Younes, Hans-Guido Wendel
Engulfment and cell motility protein 1 (ELMO1) is part of a guanine nucleotide exchange factor for Ras-related C3 botulinum toxin substrate (Rac), and ELMO1 polymorphisms were identified to be associated with diabetic nephropathy in genome-wide association studies. We generated a set of Akita Ins2C96Y diabetic mice having 5 graded cardiac mRNA levels of ELMO1 from 30% to 200% of normal and found that severe dilated cardiomyopathy develops in ELMO1-hypermorphic mice independent of renal function at age 16 weeks, whereas ELMO1-hypomorphic mice were completely protected. As ELMO1 expression increased, reactive oxygen species indicators, dissociation of the intercalated disc, mitochondrial fragmentation/dysfunction, cleaved caspase-3 levels, and actin polymerization increased in hearts from Akita mice. Cardiomyocyte-specific overexpression in otherwise ELMO1-hypomorphic Akita mice was sufficient to promote cardiomyopathy. Cardiac Rac1 activity was positively correlated with the ELMO1 levels, and oral administration of a pan-Rac inhibitor, EHT1864, partially mitigated cardiomyopathy of the ELMO1 hypermorphs. Disrupting Nox4, a Rac-independent NADPH oxidase, also partially mitigated it. In contrast, a pan-NADPH oxidase inhibitor, VAS3947, markedly prevented cardiomyopathy. Our data demonstrate that in diabetes mellitus ELMO1 is the “rate-limiting” factor of reactive oxygen species production via both Rac-dependent and Rac-independent NADPH oxidases, which in turn trigger cellular signaling cascades toward cardiomyopathy.
Masao Kakoki, Edward M. Bahnson, John R. Hagaman, Robin M. Siletzky, Ruriko Grant, Yukako Kayashima, Feng Li, Esther Y. Lee, Michelle T. Sun, Joan M. Taylor, Jessica C. Rice, Michael F. Almeida, Ben A. Bahr, J. Charles Jennette, Oliver Smithies, Nobuyo Maeda-Smithies
Impaired insulin secretion in type 2 diabetes (T2D) is linked to reduced insulin granule docking, disorganization of the exocytotic site, and impaired glucose-dependent facilitation of insulin exocytosis. We show in β cells from 80 human donors that the glucose-dependent amplification of exocytosis is disrupted in T2D. Spatial analyses of granule fusion events, visualized by total internal reflection fluorescence microscopy in 24 of these donors, demonstrated that these events are nonrandom across the surface of β cells from donors with no diabetes. The compartmentalization of events occurs within regions defined by concurrent or recent membrane-resident secretory granules. This organization, and the number of membrane-associated granules, is glucose dependent and notably impaired in T2D β cells. Mechanistically, multichannel Kv2.1 clusters contribute to maintaining the density of membrane-resident granules and the number of fusion “hotspots,” while SUMOylation sites at the channel N- (K145) and C-terminus (K470) determine the relative proportion of fusion events occurring within these regions. Thus, a glucose-dependent compartmentalization of fusion, regulated in part by a structural role for Kv2.1, is disrupted in β cells from donors with T2D.
Jianyang Fu, John Maringa Githaka, Xiaoqing Dai, Gregory Plummer, Kunimasa Suzuki, Aliya F. Spigelman, Austin Bautista, Ryekjang Kim, Dafna Greitzer-Antes, Jocelyn E. Manning Fox, Herbert Y. Gaisano, Patrick E. MacDonald
An imbalance of nephroprotective factors and renal damaging molecules contributes to development and progression of chronic kidney disease (CKD). We investigated associations of renoprotective factor gene expression patterns with CKD severity and outcome. Gene expression profiles of 197 previously reported renoprotective factors were analyzed in a discovery cohort in renal biopsies of 63 CKD patients. Downregulation of dicarbonyl and L-xylulose reductase (DCXR) showed the strongest association with disease progression. This significant association was validated in an independent set of 225 patients with nephrotic syndrome from the multicenter NEPTUNE cohort. Reduced expression of DCXR was significantly associated with degree of histological damage as well as with lower estimated glomerular filtration rate and increased urinary protein levels. DCXR downregulation in CKD was confirmed in 3 publicly available transcriptomics data sets in the context of CKD. Expression of DCXR showed positive correlations to enzymes that are involved in dicarbonyl stress detoxification based on transcriptomics profiles. The sodium glucose cotransporter-2 (SGLT2) inhibitors canagliflozin and empagliflozin showed a beneficial effect on renal proximal tubular cells under diabetic stimuli–enhanced DCXR gene expression. In summary, lower expression of the renoprotective factor DCXR in renal tissue is associated with more severe disease and worse outcome in human CKD.
Paul Perco, Wenjun Ju, Julia Kerschbaum, Johannes Leierer, Rajasree Menon, Catherine Zhu, Matthias Kretzler, Gert Mayer, Michael Rudnicki, Nephrotic Syndrome Study Network (NEPTUNE)
BACKGROUND Metabolic syndrome (MetS) is highly correlated with obesity and cardiovascular risk, but the importance of dietary carbohydrate independent of weight loss in MetS treatment remains controversial. Here, we test the theory that dietary carbohydrate intolerance (i.e., the inability to process carbohydrate in a healthy manner) rather than obesity per se is a fundamental feature of MetS.METHODS Individuals who were obese with a diagnosis of MetS were fed three 4-week weight-maintenance diets that were low, moderate, and high in carbohydrate. Protein was constant and fat was exchanged isocalorically for carbohydrate across all diets.RESULTS Despite maintaining body mass, low-carbohydrate (LC) intake enhanced fat oxidation and was more effective in reversing MetS, especially high triglycerides, low HDL-C, and the small LDL subclass phenotype. Carbohydrate restriction also improved abnormal fatty acid composition, an emerging MetS feature. Despite containing 2.5 times more saturated fat than the high-carbohydrate diet, an LC diet decreased plasma total saturated fat and palmitoleate and increased arachidonate.CONCLUSION Consistent with the perspective that MetS is a pathologic state that manifests as dietary carbohydrate intolerance, these results show that compared with eucaloric high-carbohydrate intake, LC/high-fat diets benefit MetS independent of whole-body or fat mass.TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02918422.FUNDING Dairy Management Inc. and the Dutch Dairy Association.
Parker N. Hyde, Teryn N. Sapper, Christopher D. Crabtree, Richard A. LaFountain, Madison L. Bowling, Alex Buga, Brandon Fell, Fionn T. McSwiney, Ryan M. Dickerson, Vincent J. Miller, Debbie Scandling, Orlando P. Simonetti, Stephen D. Phinney, William J. Kraemer, Sarah A. King, Ronald M. Krauss, Jeff S. Volek
In HIV-infected individuals on long-term antiretroviral therapy (ART), more than 40% of the infected cells are in clones. Although most HIV proviruses present in individuals on long-term ART are defective, including those in clonally expanded cells, there is increasing evidence that clones carrying replication-competent proviruses are common in patients on long-term ART and form part of the HIV reservoir that makes it impossible to cure HIV infection with current ART alone. Given the importance of clonal expansion in HIV persistence, we determined how soon after HIV acquisition infected clones can grow large enough to be detected (clones larger than ca. 1 × 105 cells). We studied 12 individuals sampled in early HIV infection (Fiebig stage III–V/VI) and 5 who were chronically infected. The recently infected individuals were started on ART at or near the time of diagnosis. We isolated more than 6,500 independent integration sites from peripheral blood mononuclear cells before ART was initiated and after 0.5–18 years of suppressive ART. Some infected clones could be detected approximately 4 weeks after HIV infection and some of these clones persisted for years. The results help to explain how the reservoir is established early and persists for years.
John M. Coffin, David W. Wells, Jennifer M. Zerbato, Joann D. Kuruc, Shuang Guo, Brian T. Luke, Joseph J. Eron, Michael Bale, Jonathan Spindler, Francesco R. Simonetti, Shawn Hill, Mary F. Kearney, Frank Maldarelli, Xiaolin Wu, John W. Mellors, Stephen H. Hughes
TRIOBP remodels the cytoskeleton by forming unusually dense F-actin bundles and is implicated in human cancer, schizophrenia, and deafness. Mutations ablating human and mouse TRIOBP-4 and TRIOBP-5 isoforms are associated with profound deafness, as inner ear mechanosensory hair cells degenerate after stereocilia rootlets fail to develop. However, the mechanisms regulating formation of stereocilia rootlets by each TRIOBP isoform remain unknown. Using 3 new Triobp mouse models, we report that TRIOBP-5 is essential for thickening bundles of F-actin in rootlets, establishing their mature dimensions and for stiffening supporting cells of the auditory sensory epithelium. The coiled-coil domains of this isoform are required for reinforcement and maintenance of stereocilia rootlets. A loss of TRIOBP-5 in mouse results in dysmorphic rootlets that are abnormally thin in the cuticular plate but have increased widths and lengths within stereocilia cores, and causes progressive deafness recapitulating the human phenotype. Our study extends the current understanding of TRIOBP isoform–specific functions necessary for life-long hearing, with implications for insight into other TRIOBPopathies.
Tatsuya Katsuno, Inna A. Belyantseva, Alexander X. Cartagena-Rivera, Keisuke Ohta, Shawn M. Crump, Ronald S. Petralia, Kazuya Ono, Risa Tona, Ayesha Imtiaz, Atteeq Rehman, Hiroshi Kiyonari, Mari Kaneko, Ya-Xian Wang, Takaya Abe, Makoto Ikeya, Cristina Fenollar-Ferrer, Gavin P. Riordan, Elisabeth A. Wilson, Tracy S. Fitzgerald, Kohei Segawa, Koichi Omori, Juichi Ito, Gregory I. Frolenkov, Thomas B. Friedman, Shin-ichiro Kitajiri
BACKGROUND Cerebral cavernous angiomas (CAs) with a symptomatic hemorrhage (CASH) have a high risk of recurrent hemorrhage and serious morbidity.METHODS Eighteen plasma molecules with mechanistic roles in CA pathobiology were investigated in 114 patients and 12 healthy subjects. The diagnostic biomarker of a CASH in the prior year was derived as that minimizing the Akaike information criterion and validated using machine learning, and was compared with the prognostic CASH biomarker predicting bleeding in the subsequent year. Biomarkers were longitudinally followed in a subset of cases. The biomarkers were queried in the lesional neurovascular unit (NVU) transcriptome and in plasma miRNAs from CASH and non-CASH patients.RESULTS The diagnostic CASH biomarker included a weighted combination of soluble CD14 (sCD14), VEGF, C-reactive protein (CRP), and IL-10 distinguishing CASH patients with 76% sensitivity and 80% specificity (P = 0.0003). The prognostic CASH biomarker (sCD14, VEGF, IL-1β, and sROBO-4) was confirmed to predict a bleed in the subsequent year with 83% sensitivity and 93% specificity (P = 0.001). Genes associated with diagnostic and prognostic CASH biomarkers were differentially expressed in CASH lesional NVUs. Thirteen plasma miRNAs were differentially expressed between CASH and non-CASH patients.CONCLUSION Shared and unique biomarkers of recent symptomatic hemorrhage and of future bleeding in CA are mechanistically linked to lesional transcriptome and miRNA. The biomarkers may be applied for risk stratification in clinical trials and developed as a tool in clinical practice.FUNDING NIH, William and Judith Davis Fund in Neurovascular Surgery Research, Be Brave for Life Foundation, Safadi Translational Fellowship, Pritzker School of Medicine, and Sigrid Jusélius Foundation.
Seán B. Lyne, Romuald Girard, Janne Koskimäki, Hussein A. Zeineddine, Dongdong Zhang, Ying Cao, Yan Li, Agnieszka Stadnik, Thomas Moore, Rhonda Lightle, Changbin Shi, Robert Shenkar, Julián Carrión-Penagos, Sean P. Polster, Sharbel Romanos, Amy Akers, Miguel Lopez-Ramirez, Kevin J. Whitehead, Mark L. Kahn, Mark H. Ginsberg, Douglas A. Marchuk, Issam A. Awad
An incomplete understanding of the biology of the human kidney, including the relative abundances of and interactions between intrinsic and immune cells, has long constrained the development of therapies for kidney disease. The small amount of tissue obtained by renal biopsy has previously limited the ability to use patient samples for discovery purposes. Imaging mass cytometry (IMC) is an ideal technology for quantitative interrogation of scarce samples, permitting concurrent analysis of more than 40 markers on a single tissue section. Using a validated panel of metal-conjugated antibodies designed to confer unique signatures on the structural and infiltrating cells comprising the human kidney, we performed simultaneous multiplexed imaging with IMC in 23 channels on 16 histopathologically normal human samples. We devised a machine-learning pipeline (Kidney-MAPPS) to perform single-cell segmentation, phenotyping, and quantification, thus creating a spatially preserved quantitative atlas of the normal human kidney. These data define selected baseline renal cell types, respective numbers, organization, and variability. We demonstrate the utility of IMC coupled to Kidney-MAPPS to qualitatively and quantitatively distinguish individual cell types and reveal expected as well as potentially novel abnormalities in diseased versus normal tissue. Our studies define a critical baseline data set for future quantitative analysis of human kidney disease.
Nikhil Singh, Zachary M. Avigan, Judith A. Kliegel, Brian M. Shuch, Ruth R. Montgomery, Gilbert W. Moeckel, Lloyd G. Cantley
Benign prostatic hyperplasia (BPH) is the most common cause of lower urinary tract symptoms in men. Current treatments target prostate physiology rather than BPH pathophysiology and are only partially effective. Here, we applied next-generation sequencing to gain insight into BPH. By RNA-Seq, we uncovered transcriptional heterogeneity among BPH cases, where a 65-gene BPH stromal signature correlated with symptom severity. Stromal signaling molecules bone morphogenetic protein 5 (BMP5) and CXC chemokine ligand 13 (CXCL13) were enriched in BPH while estrogen-regulated pathways were depleted. Notably, BMP5’s addition to cultured prostatic myofibroblasts altered their expression profile toward a BPH profile that included the BPH stromal signature. RNA-Seq also suggested an altered cellular milieu in BPH, which we verified by immunohistochemistry and single-cell RNA-Seq. In particular, BPH tissues exhibited enrichment of myofibroblast subsets but also depletion of neuroendocrine cells and an estrogen receptor–positive fibroblast cell type residing near the epithelium. By whole-exome sequencing, we uncovered somatic single-nucleotide variants in BPH, of uncertain pathogenic significance but indicative of clonal cell expansions. Thus, genomic characterization of BPH has identified a clinically relevant stromal signature and new candidate disease pathways (including a likely role for BMP5 signaling) and reveals BPH to be not merely a hyperplasia, but rather a fundamental relandscaping of cell types.
Lance W. Middleton, Zhewei Shen, Sushama Varma, Anna S. Pollack, Xue Gong, Shirley Zhu, Chunfang Zhu, Joseph W. Foley, Sujay Vennam, Robert T. Sweeney, Karen Tu, Jewison Biscocho, Okyaz Eminaga, Rosalie Nolley, Robert Tibshirani, James D. Brooks, Robert B. West, Jonathan R. Pollack