Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

An Hb-mediated circulating macrophage contributing to pulmonary vascular remodeling in sickle cell disease
Katherine Redinus, … , Paul W. Buehler, David C. Irwin
Katherine Redinus, … , Paul W. Buehler, David C. Irwin
Published August 8, 2019
Citation Information: JCI Insight. 2019;4(15):e127860. https://doi.org/10.1172/jci.insight.127860.
View: Text | PDF
Research Article Cell biology Vascular biology

An Hb-mediated circulating macrophage contributing to pulmonary vascular remodeling in sickle cell disease

  • Text
  • PDF
Abstract

Circulating macrophages recruited to the lung contribute to pulmonary vascular remodeling in various forms of pulmonary hypertension (PH). In this study we investigated a macrophage phenotype characterized by intracellular iron accumulation and expression of antioxidant (HO-1), vasoactive (ET-1), and proinflammatory (IL-6) mediators observed in the lung tissue of deceased sickle cell disease (SCD) patients with diagnosed PH. To this end, we evaluated an established rat model of group 5 PH that is simultaneously exposed to free hemoglobin (Hb) and hypobaric hypoxia (HX). Here, we tested the hypothesis that pulmonary vascular remodeling observed in human SCD with concomitant PH could be replicated and mechanistically driven in our rat model by a similar macrophage phenotype with iron accumulation and expression of a similar mixture of antioxidant (HO-1), vasoactive (ET-1), and inflammatory (IL-6) proteins. Our data suggest phenotypic similarities between pulmonary perivascular macrophages in our rat model and human SCD with PH, indicating a potentially novel maladaptive immune response to concomitant bouts of Hb and HX exposure. Moreover, by knocking out circulating macrophages with gadolinium trichloride (GdCl3), the response to combined Hb and hypobaric HX was significantly attenuated in rats, suggesting a critical role for macrophages in the exacerbation of SCD PH.

Authors

Katherine Redinus, Jin Hyen Baek, Ayla Yalamanoglu, Hye Kyung H. Shin, Radu Moldova, Julie W. Harral, Delaney Swindle, David Pak, Scott K. Ferguson, Rachelle Nuss, Kathryn Hassell, Eva Nozik-Grayck, Andre F. Palmer, Mehdi A. Fini, Vijaya Karoor, Kurt R. Stenmark, Paul W. Buehler, David C. Irwin

×

Loading citation information...
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts