Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells
Masato Mashimo, Xiangning Bu, Kazumasa Aoyama, Jiro Kato, Hiroko Ishiwata-Endo, Linda A. Stevens, Atsushi Kasamatsu, Lynne A. Wolfe, Camilo Toro, David Adams, Thomas Markello, William A. Gahl, Joel Moss
Masato Mashimo, Xiangning Bu, Kazumasa Aoyama, Jiro Kato, Hiroko Ishiwata-Endo, Linda A. Stevens, Atsushi Kasamatsu, Lynne A. Wolfe, Camilo Toro, David Adams, Thomas Markello, William A. Gahl, Joel Moss
View: Text | PDF
Research Article Genetics Therapeutics

PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells

  • Text
  • PDF
Abstract

Poly(ADP-ribosyl)ation refers to the covalent attachment of ADP-ribose to protein, generating branched, long chains of ADP-ribose moieties, known as poly(ADP-ribose) (PAR). Poly(ADP-ribose) polymerase 1 (PARP1) is the main polymerase and acceptor of PAR in response to DNA damage. Excessive intracellular PAR accumulation due to PARP1 activation leads cell death in a pathway known as parthanatos. PAR degradation is mainly controlled by poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribose-acceptor hydrolase 3 (ARH3). Our previous results demonstrated that ARH3 confers protection against hydrogen peroxide (H2O2) exposure, by lowering cytosolic and nuclear PAR levels and preventing apoptosis-inducing factor (AIF) nuclear translocation. We identified a family with an ARH3 gene mutation that resulted in a truncated, inactive protein. The 8-year-old proband exhibited a progressive neurodegeneration phenotype. In addition, parthanatos was observed in neurons of the patient’s deceased sibling, and an older sibling exhibited a mild behavioral phenotype. Consistent with the previous findings, the patient’s fibroblasts and ARH3-deficient mice were more sensitive, respectively, to H2O2 stress and cerebral ischemia/reperfusion-induced PAR accumulation and cell death. Further, PARP1 inhibition alleviated cell death and injury resulting from oxidative stress and ischemia/reperfusion. PARP1 inhibitors may attenuate the progression of neurodegeneration in affected patients with ARH3 deficiency.

Authors

Masato Mashimo, Xiangning Bu, Kazumasa Aoyama, Jiro Kato, Hiroko Ishiwata-Endo, Linda A. Stevens, Atsushi Kasamatsu, Lynne A. Wolfe, Camilo Toro, David Adams, Thomas Markello, William A. Gahl, Joel Moss

×

Full Text PDF

Download PDF (27.86 MB)

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts