Go to The Journal of Clinical Investigation
Insight white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

Insight white on transparent small

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Transfers
  • Current issue
  • Past issues
  • By specialty
  • Contact
  • Recently published
  • Technical Advances
  • Clinical Medicine
  • Editorials
  • Top read articles
Intestinal clock system regulates skeletal homeostasis
Masanobu Kawai, … , Keiichi Ozono, Toshimi Michigami
Masanobu Kawai, … , Keiichi Ozono, Toshimi Michigami
Published February 7, 2019
Citation Information: JCI Insight. 2019. https://doi.org/10.1172/jci.insight.121798.
View: Text | PDF
Categories: Research In-Press Preview Bone biology Gastroenterology

Intestinal clock system regulates skeletal homeostasis

  • Text
  • PDF
Abstract

The circadian clock network is an evolutionally conserved system involved in the regulation of metabolic homeostasis; however, its impacts on skeletal metabolism remain largely unknown. We herein demonstrated that circadian clock network in the intestines plays pivotal roles in skeletal metabolism such that the lack of Bmal1 gene in the intestines (Bmal1Int-/- mice) caused bone loss with bone resorption being activated and bone formation suppressed. Mechanistically, Clock interaction with Vitamin D receptor (Vdr) accelerated its binding to VDR response element by enhancing histone acetylation in a circadian-dependent manner, and this was lost in Bmal1Int-/- mice because nuclear translocation of Clock required the presence of Bmal1. Accordingly, the rhythmic expression of Vdr-target genes involved in transcellular calcium (Ca) absorption was created, and this was not observed in Bmal1Int-/- mice. As a result, transcellular Ca absorption was impaired and bone resorption was activated in Bmal1Int-/- mice. Additionally, sympathetic tone, the activation of which suppresses bone formation, was elevated through afferent vagal nerves in Bmal1Int-/- mice, the blockade of which partially recovered bone loss by increasing bone formation and suppressing bone resorption in Bmal1Int-/- mice. These results demonstrate that the intestinal circadian system regulates skeletal bone homeostasis.

Authors

Masanobu Kawai, Saori Kinoshita, Miwa Yamazaki, Keiko Yamamoto, Clifford J. Rosen, Shigeki Shimba, Keiichi Ozono, Toshimi Michigami

×

Full Text PDF | Download (1.84 MB)

Follow JCI Insight: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts