Chandra et al. report that ⍺-synuclein spreads from gut mucosal cells to the vagus nerve, supporting the hypothesis that Parkinson’s disease may arise from the gut. The cover image shows α-synuclein (red) emerging from an enteroendocrine cell (green) onto a vagal neuron (turquoise).
Regulatory T cells (Tregs) have potential for the treatment of autoimmune diseases and graft rejection. Antigen specificity and functional stability are considered critical for their therapeutic efficacy. In this study, expansion of human Tregs in the presence of porcine PBMCs (xenoantigen-expanded Tregs, Xn-Treg) allowed the selection of a distinct Treg subset, coexpressing the activation/memory surface markers HLA-DR and CD27 with enhanced proportion of FOXP3+Helios+ Tregs. Compared with their unsorted and HLA-DR+CD27+ double-positive (DP) cell–depleted Xn-Treg counterparts, HLA-DR+CD27+ DP-enriched Xn-Tregs expressed upregulated Treg function markers CD95 and ICOS with enhanced suppression of xenogeneic but not polyclonal mixed lymphocyte reaction. They also had less Treg-specific demethylation in the region of FOXP3 and were more resistant to conversion to effector cells under inflammatory conditions. Adoptive transfer of porcine islet recipient NOD/SCID IL2 receptor γ–/– mice with HLA-DR+CD27+ DP-enriched Xn-Tregs in a humanized mouse model inhibited porcine islet graft rejection mediated by 25-fold more human effector cells. The prolonged graft survival was associated with enhanced accumulation of FOXP3+ Tregs and upregulated expression of Treg functional genes, IL10 and cytotoxic T lymphocyte antigen 4, but downregulated expression of effector Th1, Th2, and Th17 cytokine genes, within surviving grafts. Collectively, human HLA-DR+CD27+ DP-enriched Xn-Tregs expressed a specific regulatory signature that enabled identification and isolation of antigen-specific and functionally stable Tregs with potential as a Treg-based therapy.
Xiaoqian Ma, Lu Cao, Martina Raneri, Hannah Wang, Qi Cao, Yuanfei Zhao, Naiara G. Bediaga, Gaetano Naselli, Leonard C. Harrison, Wayne J. Hawthorne, Min Hu, Shounan Yi, Philip J. O’Connell
Aberrant angiogenesis in hepatocellular carcinoma (HCC) is associated with tumor growth, progression, and local or distant metastasis. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that plays a major role in regulating angiogenesis during adaptation of tumor cells to nutrient-deprived microenvironments. Genetic defects in Krebs cycle enzymes, such as succinate dehydrogenase and fumarate hydratase, result in elevation of oncometabolites succinate and fumarate, thereby increasing HIF-1α stability and activating the HIF-1α signaling pathway. However, whether other metabolites regulate HIF-1α stability remains unclear. Here, we reported that deficiency of the enzyme in phenylalanine/tyrosine catabolism, glutathione S-transferase zeta 1 (GSTZ1), led to accumulation of succinylacetone, which was structurally similar to α-ketoglutarate. Succinylacetone competed with α-ketoglutarate for prolyl hydroxylase domain 2 (PHD2) binding and inhibited PHD2 activity, preventing hydroxylation of HIF-1α, thus resulting in its stabilization and consequent expression of vascular endothelial growth factor (VEGF). Our findings suggest that GSTZ1 may serve as an important tumor suppressor owing to its ability to inhibit the HIF-1α/VEGFA axis in HCC. Moreover, we explored the therapeutic potential of HIF-1α inhibitor combined with anti–programmed cell death ligand 1 therapy to effectively prevent HCC angiogenesis and tumorigenesis in Gstz1-knockout mice, suggesting a potentially actionable strategy for HCC treatment.
Huating Luo, Qiujie Wang, Fan Yang, Rui Liu, Qingzhu Gao, Bin Cheng, Xue Lin, Luyi Huang, Chang Chen, Jin Xiang, Kai Wang, Bo Qin, Ni Tang
IL-12 is a potent cytokine that can promote innate and adaptive anticancer immunity, but its clinical development has been limited by toxicity when delivered systemically. Intratumoral (i.t.) administration can expand the therapeutic window of IL-12 and other cytokines but is in turn limited by rapid drug clearance from the tumor, which reduces efficacy, necessitates frequent administration, and increases systemic accumulation. To address these limitations, we developed an anchored IL-12 designated ANK-101, composed of an engineered IL-12 variant that forms a stable complex with the FDA-approved vaccine adjuvant aluminum hydroxide (Alhydrogel). Following i.t. administration of murine ANK-101 (mANK-101) in early intervention syngeneic mouse tumors, the complex formed a depot that was locally retained for weeks as measured by IVIS or SPECT/CT imaging, while unanchored protein injected i.t. was cleared within hours. One or 2 i.t. injections of mANK-101 induced single-agent antitumor activity across a diverse range of syngeneic tumors, including models resistant to checkpoint blockade at doses where unanchored IL-12 had no efficacy. Local treatment with mANK-101 further induced regressions of noninjected lesions, especially when combined with systemic checkpoint blockade. Antitumor activity was associated with remodeling of the tumor microenvironment, including prolonged IFN-γ and chemokine expression, recruitment and activation of T and NK cells, M1 myeloid cell skewing, and increased antigen processing and presentation. Subcutaneous administration of ANK-101 in cynomolgus macaques was well tolerated. Together, these data demonstrate that ANK-101 has an enhanced efficacy and safety profile and warrants future clinical development.
Sailaja Battula, Gregory Papastoitsis, Howard L. Kaufman, K. Dane Wittrup, Michael M. Schmidt
Diabetes commonly affects patients with cancer. We investigated the influence of diabetes on breast cancer biology using a 3-pronged approach that included analysis of orthotopic human tumor xenografts, patient tumors, and breast cancer cells exposed to diabetes/hyperglycemia-like conditions. We aimed to identify shared phenotypes and molecular signatures by investigating the metabolome, transcriptome, and tumor mutational burden. Diabetes and hyperglycemia did not enhance cell proliferation but induced mesenchymal and stem cell–like phenotypes linked to increased mobility and odds of metastasis. They also promoted oxyradical formation and both a transcriptome and mutational signatures of DNA repair deficiency. Moreover, food- and microbiome-derived metabolites tended to accumulate in breast tumors in the presence of diabetes, potentially affecting tumor biology. Breast cancer cells cultured under hyperglycemia-like conditions acquired increased DNA damage and sensitivity to DNA repair inhibitors. Based on these observations, we conclude that diabetes-associated breast tumors may show an increased drug response to DNA damage repair inhibitors.
Gatikrushna Panigrahi, Julián Candia, Tiffany H. Dorsey, Wei Tang, Yuuki Ohara, Jung S. Byun, Tsion Zewdu Minas, Amy Zhang, Anuoluwapo Ajao, Ashley Cellini, Harris G. Yfantis, Amy L. Flis, Dean Mann, Olga Ioffe, Xin W. Wang, Huaitian Liu, Christopher A. Loffredo, Anna Maria Napoles, Stefan Ambs
BACKGROUND Although 25-hydroxyvitamin D [25(OH)D] concentrations of 30 ng/mL or higher are known to reduce injury risk and boost strength, the influence on anterior cruciate ligament reconstruction (ACLR) outcomes remains unexamined. This study aimed to define the vitamin D signaling response to ACLR, assess the relationship between vitamin D status and muscle fiber cross-sectional area (CSA) and bone density outcomes, and discover vitamin D receptor (VDR) targets after ACLR.METHODS Twenty-one young, healthy, physically active participants with recent ACL tears were enrolled (17.8 ± 3.2 years, BMI 26.0 ± 3.5 kg/m2). Data were collected through blood samples, vastus lateralis biopsies, dual energy x-ray bone density measurements, and isokinetic dynamometer measures at baseline, 1 week, 4 months, and 6 months after ACLR. The biopsies facilitated CSA, Western blotting, RNA-seq, and VDR ChIP-seq analyses.RESULTS ACLR surgery led to decreased circulating bioactive vitamin D and increased VDR and activating enzyme expression in skeletal muscle 1 week after ACLR. Participants with less than 30 ng/mL 25(OH)D levels (n = 13) displayed more significant quadriceps fiber CSA loss 1 week and 4 months after ACLR than those with 30 ng/mL or higher (n = 8; P < 0.01 for post hoc comparisons; P = 0.041 for time × vitamin D status interaction). RNA-seq and ChIP-seq data integration revealed genes associated with energy metabolism and skeletal muscle recovery, potentially mediating the impact of vitamin D status on ACLR recovery. No difference in bone mineral density losses between groups was observed.CONCLUSION Correcting vitamin D status prior to ACLR may aid in preserving skeletal muscle during recovery.FUNDING NIH grants R01AR072061, R01AR071398-04S1, and K99AR081367.
Yuan Wen, Christine M. Latham, Angelique N. Moore, Nicholas T. Thomas, Brooke D. Lancaster, Kelsey A. Reeves, Alexander R. Keeble, Christopher S. Fry, Darren L. Johnson, Katherine L. Thompson, Brian Noehren, Jean L. Fry
Gout commonly manifests as a painful, self-limiting inflammatory arthritis. Nevertheless, the understanding of the inflammatory and immune responses underlying gout flares and remission remains ambiguous. Here, based on single-cell RNA-Seq and an independent validation cohort, we identified the potential mechanism of gout flare, which likely involves the upregulation of HLA-DQA1+ nonclassical monocytes and is related to antigen processing and presentation. Furthermore, Tregs also play an essential role in the suppressive capacity during gout remission. Cell communication analysis suggested the existence of altered crosstalk between monocytes and other T cell types, such as Tregs. Moreover, we observed the systemic upregulation of inflammatory and cytokine genes, primarily in classical monocytes, during gout flares. All monocyte subtypes showed increased arachidonic acid metabolic activity along with upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2). We also detected a decrease in blood arachidonic acid and an increase in leukotriene B4 levels during gout flares. In summary, our study illustrates the distinctive immune cell responses and systemic inflammation patterns that characterize the transition from gout flares to remission, and it suggests that blood monocyte subtypes and Tregs are potential intervention targets for preventing recurrent gout attacks and progression.
Hanjie Yu, Wen Xue, Hanqing Yu, Yaxiang Song, Xinying Liu, Ling Qin, Shu Wang, Hui Bao, Hongchen Gu, Guangqi Chen, Dake Zhao, Yang Tu, Jiafen Cheng, Liya Wang, Zisheng Ai, Dayong Hu, Ling Wang, Ai Peng
Intestinal epithelial transit-amplifying cells are essential stem progenitors required for intestinal homeostasis, but their rapid proliferation renders them vulnerable to DNA damage from radiation and chemotherapy. Despite these cells’ critical roles in intestinal homeostasis and disease, few studies have described genes that are essential to transit-amplifying cell function. We report that RNA methyltransferase-like 3 (METTL3) is required for survival of transit-amplifying cells in the murine small intestine. Transit-amplifying cell death after METTL3 deletion was associated with crypt and villus atrophy, loss of absorptive enterocytes, and uniform wasting and death in METTL3-depleted mice. Sequencing of polysome-bound and methylated RNAs in enteroids and in vivo demonstrated decreased translation of hundreds of methylated transcripts after METTL3 deletion, particularly transcripts involved in growth factor signal transduction such as Kras. Further investigation verified a relationship between METTL3 and Kras methylation and protein levels in vivo. Our study identifies METTL3 as an essential factor supporting the homeostasis of small intestinal tissue via direct maintenance of transit-amplifying cell survival. We highlight the crucial role of RNA modifications in regulating growth factor signaling in the intestine with important implications for both homeostatic tissue renewal and epithelial regeneration.
Charles H. Danan, Kaitlyn E. Naughton, Katharina E. Hayer, Sangeevan Vellappan, Emily A. McMillan, Yusen Zhou, Rina Matsuda, Shaneice K. Nettleford, Kay Katada, Louis R. Parham, Xianghui Ma, Afrah Chowdhury, Benjamin J. Wilkins, Premal Shah, Matthew D. Weitzman, Kathryn E. Hamilton
The management of preretinal fibrovascular membranes, a devastating complication of advanced diabetic retinopathy (DR), remains challenging. We characterized the molecular profile of cell populations in these fibrovascular membranes to identify potentially new therapeutic targets. Preretinal fibrovascular membranes were surgically removed from patients and submitted for single-cell RNA-Seq (scRNA-Seq). Differential gene expression was implemented to define the transcriptomics profile of these cells and revealed the presence of endothelial, inflammatory, and stromal cells. Endothelial cell reclustering identified subclusters characterized by noncanonical transcriptomics profile and active angiogenesis. Deeper investigation of the inflammatory cells showed a subcluster of macrophages expressing proangiogenic cytokines, presumably contributing to angiogenesis. The stromal cell cluster included a pericyte-myofibroblast transdifferentiating subcluster, indicating the involvement of pericytes in fibrogenesis. Differentially expressed gene analysis showed that Adipocyte Enhancer-binding Protein 1, AEBP1, was significantly upregulated in myofibroblast clusters, suggesting that this molecule may have a role in transformation. Cell culture experiments with human retinal pericytes (HRP) in high-glucose condition confirmed the molecular transformation of pericytes toward myofibroblastic lineage. AEBP1 siRNA transfection in HRP reduced the expression of profibrotic markers in high glucose. In conclusion, AEBP1 signaling modulates pericyte-myofibroblast transformation, suggesting that targeting AEBP1 could prevent scar tissue formation in advanced DR.
Katia Corano Scheri, Jeremy A. Lavine, Thomas Tedeschi, Benjamin R. Thomson, Amani A. Fawzi
Epidemiological and histopathological findings have raised the possibility that misfolded α-synuclein protein might spread from the gut to the brain and increase the risk of Parkinson’s disease. Although past experimental studies in mouse models have relied on gut injections of exogenous recombinant α-synuclein fibrils to study gut-to-brain α-synuclein transfer, the possible origins of misfolded α-synuclein within the gut have remained elusive. We recently demonstrated that sensory cells of intestinal mucosa express α-synuclein. Here, we employed mouse intestinal organoids expressing human α-synuclein to observe the transfer of α-synuclein protein from epithelial cells in organoids to cocultured nodose neurons devoid of α-synuclein. In mice expressing human α-synuclein, but no mouse α-synuclein, α-synuclein fibril-templating activity emerged in α-synuclein–seeded fibril aggregation assays in intestine, vagus nerve, and dorsal motor nucleus. In newly engineered transgenic mice that restrict pathological human α-synuclein expression to intestinal epithelial cells, α-synuclein fibril-templating activity transfered to the vagus nerve and dorsal motor nucleus. Subdiaphragmatic vagotomy prior to induction of α-synuclein expression in intestinal epithelial cells effectively protected the hindbrain from emergence of α-synuclein fibril-templating activity. Overall, these findings highlight a potential non-neuronal source of fibrillar α-synuclein protein that might arise in gut mucosal cells.
Rashmi Chandra, Arpine Sokratian, Katherine R. Chavez, Stephanie King, Sandip M. Swain, Joshua C. Snyder, Andrew B. West, Rodger A. Liddle
Patients with Down syndrome (DS), or trisomy 21 (T21), are at increased risk of transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia (ML-DS). Both TAM and ML-DS require prenatal somatic mutations in GATA1, resulting in the truncated isoform GATA1s. The mechanism by which individual chromosome 21 (HSA21) genes synergize with GATA1s for leukemic transformation is challenging to study, in part due to limited human cell models with wild-type GATA1 (wtGATA1) or GATA1s. HSA21-encoded DYRK1A is overexpressed in ML-DS and may be a therapeutic target. To determine how DYRK1A influences hematopoiesis in concert with GATA1s, we used gene editing to disrupt all 3 alleles of DYRK1A in isogenic T21 induced pluripotent stem cells (iPSCs) with and without the GATA1s mutation. Unexpectedly, hematopoietic differentiation revealed that DYRK1A loss combined with GATA1s leads to increased megakaryocyte proliferation and decreased maturation. This proliferative phenotype was associated with upregulation of D-type cyclins and hyperphosphorylation of Rb to allow E2F release and derepression of its downstream targets. Notably, DYRK1A loss had no effect in T21 iPSCs or megakaryocytes with wtGATA1. These surprising results suggest that DYRK1A and GATA1 may synergistically restrain megakaryocyte proliferation in T21 and that DYRK1A inhibition may not be a therapeutic option for GATA1s-associated leukemias.
Ying Ting Sit, Kaoru Takasaki, Hyun Hyung An, Yan Xiao, Christian Hurtz, Peter A. Gearhart, Zhe Zhang, Paul Gadue, Deborah L. French, Stella T. Chou
The selective targeting of pathogenic T cells is a holy grail in the development of new therapeutics for T cell–mediated disorders, including many autoimmune diseases and graft versus host disease. We describe the development of a CD6-targeted antibody-drug conjugate (CD6-ADC) by conjugating an inactive form of monomethyl auristatin E (MMAE), a potent mitotic toxin, onto a mAb against CD6, an established T cell surface marker. Even though CD6 is present on all T cells, only the activated (pathogenic) T cells vigorously divide and thus are susceptible to the antimitotic MMAE-mediated killing via the CD6-ADC. We found CD6-ADC selectively killed activated proliferating human T cells and antigen-specific mouse T cells in vitro. Furthermore, in vivo, whereas the CD6-ADC had no significant detrimental effect on normal T cells in naive CD6-humanized mice, the same dose of CD6-ADC, but not the controls, efficiently treated 2 preclinical models of autoimmune uveitis and a model of graft versus host disease. These results provide evidence suggesting that CD6-ADC could be further developed as a potential therapeutic agent for the selective elimination of pathogenic T cells and treatment of many T cell–mediated disorders.
Lingjun Zhang, Liping Luo, Jin Y. Chen, Rupesh Singh, William M. Baldwin III, David A. Fox, Daniel J. Lindner, Daniel F. Martin, Rachel R. Caspi, Feng Lin
BACKGROUND Intrathecal injection is an attractive route through which drugs can be administered and directed to the spinal cord, restricted by the blood-spinal cord barrier. However, in vivo data on the distribution of cerebrospinal fluid (CSF) substances in the human spinal cord are lacking. We conducted this study to assess the enrichment of a CSF tracer in the upper cervical spinal cord and the brain stem.METHODS After lumbar intrathecal injection of a magnetic resonance imaging (MRI) contrast agent, gadobutrol, repeated blood samples and MRI of the upper cervical spinal cord, brain stem, and adjacent subarachnoid spaces (SAS) were obtained through 48 hours. The MRI scans were then analyzed for tracer distribution in the different regions and correlated to age, disease, and amounts of tracer in the blood to determine CSF-to-blood clearance.RESULTS The study included 26 reference individuals and 35 patients with the dementia subtype idiopathic normal pressure hydrocephalus (iNPH). The tracer enriched all analyzed regions. Moreover, tracer enrichment in parenchyma was associated with tracer enrichment in the adjacent SAS and with CSF-to-blood clearance. Clearance from the CSF was delayed in patients with iNPH compared with younger reference patients.CONCLUSION A CSF tracer substance administered to the lumbar thecal sac can access the parenchyma of the upper cervical spinal cord and brain stem. Since CSF-to-blood clearance is highly individual and is associated with tracer level in CSF, clearance assessment may be used to tailor intrathecal treatment regimes.FUNDING South-Eastern Norway Regional Health and Østfold Hospital Trust supported the research and publication of this work.
Erik Melin, Are Hugo Pripp, Per Kristian Eide, Geir Ringstad
Thyroid hormone (TH) levels are low during development, and the deiodinases control TH signaling through tissue-specific activation or inactivation of TH. Here, we studied human induced pluripotent stem cell–derived (iPSC-derived) hepatic organoids and identified a robust induction of DIO2 expression (the deiodinase that activates T4 to T3) that occurs in hepatoblasts. The surge in DIO2-T3 (the deiodinase that activates thyroxine [T4] to triiodothyronine [T3]) persists until the hepatoblasts differentiate into hepatocyte- or cholangiocyte-like cells, neither of which expresses DIO2. Preventing the induction of the DIO2-T3 signaling modified the expression of key transcription factors, decreased the number of hepatocyte-like cells by ~60%, and increased the number of cholangiocyte-like cells by ~55% without affecting the growth or the size of the mature liver organoid. Physiological levels of T3 could not fully restore the transition from hepatoblasts to mature cells. This indicates that the timed surge in DIO2-T3 signaling critically determines the fate of developing human hepatoblasts and the transcriptome of the maturing hepatocytes, with physiological and clinical implications for how the liver handles energy substrates.
Jorge Hidalgo-Álvarez, Federico Salas-Lucia, Diana Vera Cruz, Tatiana L. Fonseca, Antonio C. Bianco
Personalized cancer vaccines aim to activate and expand cytotoxic antitumor CD8+ T cells to recognize and kill tumor cells. However, the role of CD4+ T cell activation in the clinical benefit of these vaccines is not well defined. We previously established a personalized neoantigen vaccine (PancVAX) for the pancreatic cancer cell line Panc02, which activates tumor-specific CD8+ T cells but required combinatorial checkpoint modulators to achieve therapeutic efficacy. To determine the effects of neoantigen-specific CD4+ T cell activation, we generated a vaccine (PancVAX2) targeting both major histocompatibility complex class I– (MHCI-) and MHCII-specific neoantigens. Tumor-bearing mice vaccinated with PancVAX2 had significantly improved control of tumor growth and long-term survival benefit without concurrent administration of checkpoint inhibitors. PancVAX2 significantly enhanced priming and recruitment of neoantigen-specific CD8+ T cells into the tumor with lower PD-1 expression after reactivation compared with the CD8+ vaccine alone. Vaccine-induced neoantigen-specific Th1 CD4+ T cells in the tumor were associated with decreased Tregs. Consistent with this, PancVAX2 was associated with more proimmune myeloid-derived suppressor cells and M1-like macrophages in the tumor, demonstrating a less immunosuppressive tumor microenvironment. This study demonstrates the biological importance of prioritizing and including CD4+ T cell–specific neoantigens for personalized cancer vaccine modalities.
Amanda L. Huff, Gabriella Longway, Jacob T. Mitchell, Lalitya Andaloori, Emily Davis-Marcisak, Fangluo Chen, Melissa R. Lyman, Rulin Wang, Jocelyn Mathew, Benjamin Barrett, Sabahat Rahman, James Leatherman, Mark Yarchoan, Nilofer S. Azad, Srinivasan Yegnasubramanian, Luciane T. Kagohara, Elana J. Fertig, Elizabeth M. Jaffee, Todd D. Armstrong, Neeha Zaidi
Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq) in profiling mouse autoantibodies. This library was validated using 7 genetically distinct mouse lines across a spectrum of autoreactivity. Mice deficient in antibody production (Rag2–/– and μMT) were used to model nonspecific peptide enrichments, while cross-reactivity was evaluated using anti-ovalbumin B cell receptor–restricted OB1 mice as a proof of principle. The PhIP-seq approach was then utilized to interrogate 3 distinct autoimmune disease models. First, serum from Lyn–/– IgD+/– mice with lupus-like disease was used to identify nuclear and apoptotic bleb reactivities. Second, serum from nonobese diabetic (NOD) mice, a polygenic model of pancreas-specific autoimmunity, was enriched in peptides derived from both insulin and predicted pancreatic proteins. Lastly, Aire–/– mouse sera were used to identify numerous autoantigens, many of which were also observed in previous studies of humans with autoimmune polyendocrinopathy syndrome type 1 carrying recessive mutations in AIRE. These experiments support the use of murine proteome-wide PhIP-seq for antigenic profiling and autoantibody discovery, which may be employed to study a range of immune perturbations in mouse models of autoimmunity profiling.
Elze Rackaityte, Irina Proekt, Haleigh S. Miller, Akshaya Ramesh, Jeremy F. Brooks, Andrew F. Kung, Caleigh Mandel-Brehm, David Yu, Colin R. Zamecnik, Rebecca Bair, Sara E. Vazquez, Sara Sunshine, Clare L. Abram, Clifford A. Lowell, Gabrielle Rizzuto, Michael R. Wilson, Julie Zikherman, Mark S. Anderson, Joseph L. DeRisi
Nipah virus (NiV), a bat-borne paramyxovirus, results in neurological and respiratory diseases with high mortality in humans and animals. Developing vaccines is crucial for fighting these diseases. Previously, only a few studies focused on the fusion (F) protein alone as the immunogen. Numerous NiV strains have been identified, including 2 representative strains from Malaysia (NiV-M) and Bangladesh (NiV-B), which differ significantly from each other. In this study, an F protein sequence with the potential to prevent different NiV strain infections was designed by bioinformatics analysis after an in-depth study of NiV sequences in GenBank. Then, a chimpanzee adenoviral vector vaccine and a DNA vaccine were developed. High levels of immune responses were detected after AdC68-F, pVAX1-F, and a prime-boost strategy (pVAX1-F/AdC68-F) in mice. After high titers of humoral responses were induced, the hamsters were challenged by the lethal NiV-M and NiV-B strains separately. The vaccinated hamsters did not show any clinical signs and survived 21 days after infection with either strain of NiV, and no virus was detected in different tissues. These results indicate that the vaccines provided complete protection against representative strains of NiV infection and have the potential to be developed as a broad-spectrum vaccine for human use.
Mingqing Lu, Yanfeng Yao, Hang Liu, Xuekai Zhang, Xuejie Li, Yuanhua Liu, Yun Peng, Tong Chen, Yun Sun, Ge Gao, Miaoyu Chen, Jiaxuan Zhao, XiaoYu Zhang, Chunhong Yin, Weiwei Guo, Peipei Yang, Xue Hu, Juhong Rao, Entao Li, Gary Wong, Zhiming Yuan, Sandra Chiu, Chao Shan, Jiaming Lan