Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,468 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 230
  • 231
  • 232
  • …
  • 246
  • 247
  • Next →
Antisense oligonucleotides extend survival of prion-infected mice
Gregory J. Raymond, Hien Tran Zhao, Brent Race, Lynne D. Raymond, Katie Williams, Eric E. Swayze, Samantha Graffam, Jason Le, Tyler Caron, Jacquelyn Stathopoulos, Rhonda O'Keefe, Lori L. Lubke, Andrew G. Reidenbach, Allison Kraus, Stuart L. Schreiber, Curt Mazur, Deborah E. Cabin, Jeffrey B. Carroll, Eric Vallabh Minikel, Holly Kordasiewicz, Byron Caughey, Sonia M. Vallabh
Gregory J. Raymond, Hien Tran Zhao, Brent Race, Lynne D. Raymond, Katie Williams, Eric E. Swayze, Samantha Graffam, Jason Le, Tyler Caron, Jacquelyn Stathopoulos, Rhonda O'Keefe, Lori L. Lubke, Andrew G. Reidenbach, Allison Kraus, Stuart L. Schreiber, Curt Mazur, Deborah E. Cabin, Jeffrey B. Carroll, Eric Vallabh Minikel, Holly Kordasiewicz, Byron Caughey, Sonia M. Vallabh
View: Text | PDF

Antisense oligonucleotides extend survival of prion-infected mice

  • Text
  • PDF
Abstract

Prion disease is a fatal, incurable neurodegenerative disease of humans and other mammals caused by conversion of cellular prion protein (PrP; PrPC) into a self-propagating neurotoxic conformer (prions; PrPSc). Strong genetic proofs of concept support lowering PrP expression as a therapeutic strategy. Antisense oligonucleotides (ASOs) can provide a practical route to lowering one target mRNA in the brain, but their development for prion disease has been hindered by three unresolved questions from prior work: uncertainty about mechanism of action, unclear potential for efficacy against established prion infection, and poor tolerability of drug delivery by osmotic pumps. Here we test antisense oligonucleotides (ASOs) delivered by bolus intracerebroventricular injection to intracerebrally prion-infected wild-type mice. Prophylactic treatments given every 2-3 months extended survival times 61-98%, and a single injection at 120 days post-infection, near the onset of clinical signs, extended survival 55% (87 days). In contrast, a non-targeting control ASO was ineffective. Thus, PrP lowering is the mechanism of action of ASOs effective against prion disease in vivo, and infrequent, or even single, bolus injections of ASOs can slow prion neuropathogenesis and markedly extend survival, even when initiated near clinical signs. These findings should empower development of PrP-lowering therapy for prion disease.

Authors

Gregory J. Raymond, Hien Tran Zhao, Brent Race, Lynne D. Raymond, Katie Williams, Eric E. Swayze, Samantha Graffam, Jason Le, Tyler Caron, Jacquelyn Stathopoulos, Rhonda O'Keefe, Lori L. Lubke, Andrew G. Reidenbach, Allison Kraus, Stuart L. Schreiber, Curt Mazur, Deborah E. Cabin, Jeffrey B. Carroll, Eric Vallabh Minikel, Holly Kordasiewicz, Byron Caughey, Sonia M. Vallabh

×

The long noncoding RNA MALAT1 predicts human pancreatic islet isolation quality
Wilson K.M. Wong, Guozhi Jiang, Anja E. Sørensen, Yi Vee Chew, Cody Lee-Maynard, David Liuwantara, Lindy Williams, Philip O’Connell, Louise T. Dalgaard, Ronald C. Ma, Wayne J. Hawthorne, Mugdha V. Joglekar, Anandwardhan A. Hardikar
Wilson K.M. Wong, Guozhi Jiang, Anja E. Sørensen, Yi Vee Chew, Cody Lee-Maynard, David Liuwantara, Lindy Williams, Philip O’Connell, Louise T. Dalgaard, Ronald C. Ma, Wayne J. Hawthorne, Mugdha V. Joglekar, Anandwardhan A. Hardikar
View: Text | PDF

The long noncoding RNA MALAT1 predicts human pancreatic islet isolation quality

  • Text
  • PDF
Abstract

Human islet isolation is a cost-/resource-intensive program generating islets for cell therapy in Type 1 diabetes. However, only a third of cadaveric pancreas get to clinical transplantation due to low quality/number of islets. There is a need to identify biomarker(s) that predict the quality of islets, prior to initiating their isolation. Here, we sequenced transcriptome from 18 human islet preparations stratified into three groups (Gr.1: Best quality/transplantable islets, Gr.2: Intermediary quality, Gr.3: Inferior quality/non-transplantable islets) based on routine measurements including islet purity/viability. Machine-learning algorithms involving penalized regression analyses identified 10 long-non-coding(lnc)RNAs significantly different across all group-wise comparisons (Gr1VsGr2, Gr2vsGr3, Gr1vsGr3). Two variants of Metastasis-Associated Lung Adenocarcinoma Transcript-1(MALAT1) lncRNA were common across all comparisons. We confirmed RNA-seq findings in a “validation set” of 75 human islet preparations. Finally, in 19 pancreas samples, we demonstrate that assessing the levels of MALAT1 variants alone (ROC curve AUC: 0.83) offers highest specificity in predicting post-isolation islet quality and improves the predictive potential for clinical islet transplantation when combined with Edmonton Donor Points/Body Mass Index(BMI)/North American Islet Donor Score(NAIDS). We present this resource of islet-quality-stratified lncRNA transcriptome data and identify MALAT1 as a biomarker that significantly enhances current selection methods for clinical (GMP)-grade islet isolation.

Authors

Wilson K.M. Wong, Guozhi Jiang, Anja E. Sørensen, Yi Vee Chew, Cody Lee-Maynard, David Liuwantara, Lindy Williams, Philip O’Connell, Louise T. Dalgaard, Ronald C. Ma, Wayne J. Hawthorne, Mugdha V. Joglekar, Anandwardhan A. Hardikar

×

Fibulin-1c regulates transforming growth factor-β activation in pulmonary tissue fibrosis
Gang Liu, Marion A. Cooley, Andrew G. Jarnicki, Theo Borghuis, Prema M. Nair, Gavin Tjin, Alan C. Hsu, Tatt Jhong Haw, Michael Fricker, Celeste L. Harrison, Bernadette Jones, Nicole G. Hansbro, Peter A. Wark, Jay C. Horvat, W. Scott Argraves, Brian G. Oliver, Darryl A. Knight, Janette K. Burgess, Philip M. Hansbro
Gang Liu, Marion A. Cooley, Andrew G. Jarnicki, Theo Borghuis, Prema M. Nair, Gavin Tjin, Alan C. Hsu, Tatt Jhong Haw, Michael Fricker, Celeste L. Harrison, Bernadette Jones, Nicole G. Hansbro, Peter A. Wark, Jay C. Horvat, W. Scott Argraves, Brian G. Oliver, Darryl A. Knight, Janette K. Burgess, Philip M. Hansbro
View: Text | PDF

Fibulin-1c regulates transforming growth factor-β activation in pulmonary tissue fibrosis

  • Text
  • PDF
Abstract

Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice, and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of IPF patients and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (–/–) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin and tenascin-c in collagen deposits following bleomycin challenge. In a novel mechanism of fibrosis Fbln1c bound to latent transforming growth factor (TGF)-β binding protein-1 (LTBP1) to induce TGF-β activation, and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1 and LTBP1 co-localized in lung tissues from IPF patients. Thus, Fbln1c may be a novel driver of TGF-β-induced fibrosis involving LTBP1 and may be an upstream therapeutic target.

Authors

Gang Liu, Marion A. Cooley, Andrew G. Jarnicki, Theo Borghuis, Prema M. Nair, Gavin Tjin, Alan C. Hsu, Tatt Jhong Haw, Michael Fricker, Celeste L. Harrison, Bernadette Jones, Nicole G. Hansbro, Peter A. Wark, Jay C. Horvat, W. Scott Argraves, Brian G. Oliver, Darryl A. Knight, Janette K. Burgess, Philip M. Hansbro

×

Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects
Roni F. Rayes, Jack G. Mouhanna, Ioana Nicolau, France Bourdeau, Betty Giannias, Simon Rousseau, Daniela Quail, Logan Walsh, Veena Sangwan, Nicholas Bertos, Jonathan Cools-Lartigue, Lorenzo E. Ferri, Jonathan D. Spicer
Roni F. Rayes, Jack G. Mouhanna, Ioana Nicolau, France Bourdeau, Betty Giannias, Simon Rousseau, Daniela Quail, Logan Walsh, Veena Sangwan, Nicholas Bertos, Jonathan Cools-Lartigue, Lorenzo E. Ferri, Jonathan D. Spicer
View: Text | PDF

Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects

  • Text
  • PDF
Abstract

Targeting the dynamic tumor immune microenvironment (TIME) can provide effective therapeutic strategies for cancer. Neutrophils are the predominant leukocyte population in mice and humans, and mounting evidence implicates these cells during tumor growth and metastasis. Neutrophil extracellular traps (NETs) are networks of extracellular neutrophil DNA fibers that are capable of binding tumor cells to support metastatic progression. Here we demonstrate for the first time that circulating NET levels are elevated in advanced esophageal, gastric and lung cancer patients compared to healthy controls. Using pre-clinical murine models of lung and colon cancer in combination with intravital video microscopy, we show that NETs functionally regulate disease progression and that blocking NETosis through multiple strategies significantly inhibits spontaneous metastasis to the lung and liver. Further, we visualize how inhibiting tumor-induced NETs decreases cancer cell adhesion to liver sinusoids following intrasplenic injection – a mechanism previously thought to be driven primarily by exogenous stimuli. Thus, in addition to neutrophil abundance, the functional contribution of NETosis within the TIME has critical translational relevance and represents a promising target to impede metastatic dissemination.

Authors

Roni F. Rayes, Jack G. Mouhanna, Ioana Nicolau, France Bourdeau, Betty Giannias, Simon Rousseau, Daniela Quail, Logan Walsh, Veena Sangwan, Nicholas Bertos, Jonathan Cools-Lartigue, Lorenzo E. Ferri, Jonathan D. Spicer

×

A distinct glycerophospholipid metabolism signature of acute graft versus host disease with predictive value
Yue Liu, Aijie Huang, Qi Chen, Xiaofei Chen, Yang Fei, Xiaoming Zhao, Weiping Zhang, Zhanying Hong, Zhenyu Zhu, Jianmin Yang, Yifeng Chai, Jianmin Wang, Xiaoxia Hu
Yue Liu, Aijie Huang, Qi Chen, Xiaofei Chen, Yang Fei, Xiaoming Zhao, Weiping Zhang, Zhanying Hong, Zhenyu Zhu, Jianmin Yang, Yifeng Chai, Jianmin Wang, Xiaoxia Hu
View: Text | PDF

A distinct glycerophospholipid metabolism signature of acute graft versus host disease with predictive value

  • Text
  • PDF
Abstract

BACKGROUND. Acute graft-versus-host disease (aGvHD) is a major factor that limits the successful outcomes of allogeneic hematopoietic cell transplantation (alloHSCT). Currently there are few validated biomarkers that can help predict the risk of aGvHD in clinical settings. METHODS. We performed an integrated metabolomics and transcriptomics study and identified biomarkers that distinguish alloHSCT recipients with aGvHD from alloHSCT recipients without aGvHD in two separate cohorts. RESULTS. Pathway analysis of 38 significantly altered metabolites and 1148 differentially expressed genes uncovered a distinctly altered glycerophospholipid (GPL) metabolism network. Subsequently, we developed an aGvHD risk score (GRS) based on 5 metabolites markers from GPL metabolism to predict the risk of aGvHD. GRS showed a positive predictive value of 92.2% and 89.6% in the training and validation cohorts, respectively. In addition, high GRS was correlated with poor overall survival. Gene expressions of GPL-related lipases were significantly altered in aGvHD samples, leading to dysregulated GPLs. CONCLUSIONS. Using integrative “Omic” analysis, we unraveled a comprehensive view of the molecular perturbations underlying the pathogenesis of aGvHD. Our work represents an initial investigation of a unique metabolic and transcriptomic network that may help identify aGvHD at an early stage and facilitate preemptive therapy. FUNDING. National Natural Science Foundation of China (NSFC; 81530047, 81870143, 81470321, 81770160, 81270567, 81270638, 81573396, 81703674). Shanghai Sailing Program from Science and Technology Commission Shanghai Municipality (17YF1424700). Scholarship from Shanghai Municipal Health and Family Planning Commission (2017BR012). Special Clinical Research in Health Industry in Shanghai (20184Y0054).

Authors

Yue Liu, Aijie Huang, Qi Chen, Xiaofei Chen, Yang Fei, Xiaoming Zhao, Weiping Zhang, Zhanying Hong, Zhenyu Zhu, Jianmin Yang, Yifeng Chai, Jianmin Wang, Xiaoxia Hu

×

Self-reactive B cells in the GALT are actively curtailed to prevent gut inflammation
Ashima Shukla, Cindi Chen, Julia Jellusova, Charlotte R. Leung, Elaine Kao, Numana Bhat, Wai W. Lin, John R. Apgar, Robert C. Rickert
Ashima Shukla, Cindi Chen, Julia Jellusova, Charlotte R. Leung, Elaine Kao, Numana Bhat, Wai W. Lin, John R. Apgar, Robert C. Rickert
View: Text | PDF

Self-reactive B cells in the GALT are actively curtailed to prevent gut inflammation

  • Text
  • PDF
Abstract

Immune homeostasis in the gut associated lymphoid tissues (GALT) is critical to prevent the development of inadvertent pathologies. B cells as the producers of antibodies and cytokines plays an important role in maintaining the GALT homeostasis. However, the mechanism by which B cells specifically direct their responses towards non-self-antigens and become ignorant to self-antigens in the GALT is not known. Therefore, we developed a novel mouse model by expressing Duck Egg Lysozyme (DEL) in gut epithelial cells in presence of HEL reactive B cells. Notably, we observed a transient activation and rapid deletion of self-reactive B cells in Peyers Patches and Mesenteric lymph nodes upon self-antigen exposure. The survival of self-reactive B cells upon exposure to their self-antigen was partially rescued by blocking receptor editing but could be completely rescued by stronger survival signal like ectopic expression of BCL2. Importantly, rescuing the self-reactive B cells promoted production of auto-antibodies and gut inflammation. Mechanistically, we identify a specific activation of TGFβ signaling in self-reactive B cells in the gut and a critical role of this pathway in maintaining peripheral tolerance. Collectively, our studies describe functional consequences and fate of self-reactive B cells in GALT and provide novel mechanistic insights governing self-tolerance of B cells in the gut.

Authors

Ashima Shukla, Cindi Chen, Julia Jellusova, Charlotte R. Leung, Elaine Kao, Numana Bhat, Wai W. Lin, John R. Apgar, Robert C. Rickert

×

Deletion of PTPN22 improves effector and memory CD8+ T cell responses to tumors
Rebecca J. Brownlie, David Wright, Rose Zamoyska, Robert J. Salmond
Rebecca J. Brownlie, David Wright, Rose Zamoyska, Robert J. Salmond
View: Text | PDF

Deletion of PTPN22 improves effector and memory CD8+ T cell responses to tumors

  • Text
  • PDF
Abstract

Adoptive T cell therapy (ACT) has been established as an efficacious methodology for the treatment of cancer. Identifying targets to enhance the antigen recognition, functional capacity and longevity of T cells has the potential to broaden the applicability of these approaches in the clinic. We previously reported that targeting expression of phosphotyrosine phosphatase, non-receptor type (PTPN) 22 in effector CD8+ T cells enhances the efficacy of ACT for tumor clearance in mice. In the current work, we demonstrate that, upon ACT, PTPN22-deficient effector CD8+ T cells afford greater protection against tumors expressing very low affinity antigen, but do not survive long-term in vivo. Persistence of CD8+ T cells following tumor clearance is improved by ACT of memory phenotype cells that have a distinct metabolic phenotype as compared to effector T cells. Importantly, PTPN22-deficient T cells have comparable capacity to form long-lived memory cells in vivo but enhanced anti-tumor activity in vivo and effector responses ex vivo. These findings provide key insight into the regulation of effector and memory T cell responses in vivo, and indicate that PTPN22 is a rationale target to improve ACT for cancer.

Authors

Rebecca J. Brownlie, David Wright, Rose Zamoyska, Robert J. Salmond

×

Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer
Meifang Yu, Nicholas D. Nguyen, Yanqing Huang, Daniel Lin, Tara N. Fujimoto, Jessica M. Molkentine, Amit Deorukhkar, Ya'an Kang, F. Anthony San Lucas, Conrad J. Fernandes, Eugene J. Koay, Sonal Gupta, Haoqiang Ying, Albert C. Koong, Joseph M. Herman, Jason B. Fleming, Anirban Maitra, Cullen M. Taniguchi
Meifang Yu, Nicholas D. Nguyen, Yanqing Huang, Daniel Lin, Tara N. Fujimoto, Jessica M. Molkentine, Amit Deorukhkar, Ya'an Kang, F. Anthony San Lucas, Conrad J. Fernandes, Eugene J. Koay, Sonal Gupta, Haoqiang Ying, Albert C. Koong, Joseph M. Herman, Jason B. Fleming, Anirban Maitra, Cullen M. Taniguchi
View: Text | PDF

Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (PDAC) requires mitochondrial oxidative phosphorylation (OXPHOS) to fuel its growth, however, broadly inhibiting this pathway might also disrupt essential mitochondrial functions in normal tissues. PDAC cells exhibit abnormally fragmented mitochondria that are essential to its oncogenicity, but it was unclear if this mitochondrial feature was a valid therapeutic target. Here, we present evidence that normalizing the fragmented mitochondria of pancreatic cancer via the process of mitochondrial fusion reduces OXPHOS, which correlates with suppressed tumor growth and improved survival in preclinical models. Mitochondrial fusion was achieved by genetic or pharmacologic inhibition of dynamin related protein-1 (Drp1) or through overexpression of mitofusin-2 (Mfn2). Notably, we found that oral leflunomide, an FDA-approved arthritis drug, promoted a two-fold increase in Mfn2 expression in tumors and was repurposed as a chemotherapeutic agent, improving the median survival of mice with spontaneous tumors by 50% compared to vehicle. We found that the chief tumor suppressive mechanism of mitochondrial fusion was enhanced mitophagy, which proportionally reduced mitochondrial mass and ATP production. These data suggest that mitochondrial fusion is a specific and druggable regulator of pancreatic cancer growth that could be rapidly translated to the clinic.

Authors

Meifang Yu, Nicholas D. Nguyen, Yanqing Huang, Daniel Lin, Tara N. Fujimoto, Jessica M. Molkentine, Amit Deorukhkar, Ya'an Kang, F. Anthony San Lucas, Conrad J. Fernandes, Eugene J. Koay, Sonal Gupta, Haoqiang Ying, Albert C. Koong, Joseph M. Herman, Jason B. Fleming, Anirban Maitra, Cullen M. Taniguchi

×

Computational modeling reveals multiple abnormalities of myocardial noradrenergic function in Lewy body diseases
David S. Goldstein, Mark J. Pekker, Graeme Eisenhofer, Yehonatan Sharabi
David S. Goldstein, Mark J. Pekker, Graeme Eisenhofer, Yehonatan Sharabi
View: Text | PDF

Computational modeling reveals multiple abnormalities of myocardial noradrenergic function in Lewy body diseases

  • Text
  • PDF
Abstract

BACKGROUND. Lewy body diseases, a family of aging-related neurodegenerative disorders, entail loss of the catecholamine dopamine in the nigrostriatal system and equally severe deficiency of the closely related catecholamine norepinephrine in the heart. The myocardial noradrenergic lesion is associated with major non-motor symptoms and decreased survival. Numerous mechanisms determine norepinephrine stores, and which of these are altered in Lewy body diseases has not been examined in an integrated way. We used a computational modeling approach to assess comprehensively pathways of cardiac norepinephrine synthesis, storage, release, reuptake, and metabolism in Lewy body diseases. Application of a novel kinetic model identified a pattern of dysfunctional steps contributing to norepinephrine deficiency. We then tested predictions from the model in a new cohort of Parkinson disease patients. METHODS. Rate constants were calculated for 17 reactions determining intra-neuronal norepinephrine stores. Model predictions were tested by measuring post-mortem apical ventricular concentrations and concentration ratios of catechols in controls and patients with Parkinson disease. RESULTS. The model identified low rate constants for three types of processes in the Lewy body group—catecholamine biosynthesis via tyrosine hydroxylase and L-aromatic-amino-acid decarboxylase, vesicular storage of dopamine and norepinephrine, and neuronal norepinephrine reuptake via the cell membrane norepinephrine transporter. Post-mortem catechols and catechol ratios confirmed this triad of model-predicted functional abnormalities. CONCLUSION. Denervation-independent impairments of neurotransmitter biosynthesis, vesicular sequestration, and norepinephrine recycling contribute to the myocardial norepinephrine deficiency attending Lewy body diseases. A proportion of cardiac sympathetic nerves are “sick but not dead,” suggesting targeted disease-modification strategies might retard clinical progression. TRIAL REGISTRATION. This study was not a clinical trial. FUNDING. The research reported here was supported by the Division of Intramural Research, NINDS.

Authors

David S. Goldstein, Mark J. Pekker, Graeme Eisenhofer, Yehonatan Sharabi

×

PPP2R2B hypermethylation causes acquired apoptosis deficiency in systemic autoimmune diseases
Iris K. Madera-Salcedo, Beatriz E. Sánchez-Hernández, Yevgeniya Svyryd, Marcela Esquivel-Velázquez, Noé Rodríguez-Rodríguez, María Isabel Trejo-Zambrano, H. Benjamín García-González, Gabriela Hernández-Molina, Osvaldo M. Mutchinick, Jorge Alcocer-Varela, Florencia Rosetti, José C. Crispín
Iris K. Madera-Salcedo, Beatriz E. Sánchez-Hernández, Yevgeniya Svyryd, Marcela Esquivel-Velázquez, Noé Rodríguez-Rodríguez, María Isabel Trejo-Zambrano, H. Benjamín García-González, Gabriela Hernández-Molina, Osvaldo M. Mutchinick, Jorge Alcocer-Varela, Florencia Rosetti, José C. Crispín
View: Text | PDF

PPP2R2B hypermethylation causes acquired apoptosis deficiency in systemic autoimmune diseases

  • Text
  • PDF
Abstract

Chronic inflammation causes target organ damage in patients with systemic autoimmune diseases. The factors that allow this protracted response are poorly understood. We analyzed the transcriptional regulation of PPP2R2B (B55ß), a molecule necessary for the termination of the immune response, in patients with autoimmune diseases. Altered expression of B55ß conditioned resistance to cytokine withdrawal-induced death (CWID) in patients with autoimmune diseases. The impaired upregulation of B55ß was caused by inflammation-driven hypermethylation of specific cytosines located within a regulatory element of PPP2R2B preventing CTCF binding. This phenotype could be induced in healthy T cells by exposure to TNF-α. Our results reveal a gene whose expression is affected by an acquired defect, through an epigenetic mechanism, in the setting of systemic autoimmunity. Because failure to remove activated T cells through CWID could contribute to autoimmune pathology, this mechanism illustrates a vicious cycle through which autoimmune inflammation contributes to its own perpetuation.

Authors

Iris K. Madera-Salcedo, Beatriz E. Sánchez-Hernández, Yevgeniya Svyryd, Marcela Esquivel-Velázquez, Noé Rodríguez-Rodríguez, María Isabel Trejo-Zambrano, H. Benjamín García-González, Gabriela Hernández-Molina, Osvaldo M. Mutchinick, Jorge Alcocer-Varela, Florencia Rosetti, José C. Crispín

×
  • ← Previous
  • 1
  • 2
  • …
  • 230
  • 231
  • 232
  • …
  • 246
  • 247
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts