Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Transfers
  • Current issue
  • Past issues
  • By specialty
  • Contact
  • Recently published
  • Technical Advances
  • Clinical Medicine
  • Editorials
  • Top read articles
Fibulin-1c regulates transforming growth factor–β activation in pulmonary tissue fibrosis
Gang Liu, … , Janette K. Burgess, Philip M. Hansbro
Gang Liu, … , Janette K. Burgess, Philip M. Hansbro
Published August 22, 2019; First published July 25, 2019
Citation Information: JCI Insight. 2019;4(16):e124529. https://doi.org/10.1172/jci.insight.124529.
View: Text | PDF
Categories: Research Article Cell biology Immunology

Fibulin-1c regulates transforming growth factor–β activation in pulmonary tissue fibrosis

  • Text
  • PDF
Abstract

Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of patients with IPF and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (Fbln1c–/–) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin, and tenascin-C in collagen deposits following bleomycin challenge. In a potentially novel mechanism of fibrosis, Fbln1c bound to latent TGF-β–binding protein 1 (LTBP1) to induce TGF-β activation and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1c and LTBP1 colocalized in lung tissues from patients with IPF. Thus, Fbln1c may be a novel driver of TGF-β–induced fibrosis involving LTBP1 and may be an upstream therapeutic target.

Authors

Gang Liu, Marion A. Cooley, Andrew G. Jarnicki, Theo Borghuis, Prema M. Nair, Gavin Tjin, Alan C. Hsu, Tatt Jhong Haw, Michael Fricker, Celeste L. Harrison, Bernadette Jones, Nicole G. Hansbro, Peter A. Wark, Jay C. Horvat, W. Scott Argraves, Brian G. Oliver, Darryl A. Knight, Janette K. Burgess, Philip M. Hansbro

×

Full Text PDF | Download (11.49 MB)

Follow JCI Insight:
Copyright © 2019 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts