Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
The long noncoding RNA MALAT1 predicts human islet isolation quality
Wilson K.M. Wong, … , Mugdha V. Joglekar, Anandwardhan A. Hardikar
Wilson K.M. Wong, … , Mugdha V. Joglekar, Anandwardhan A. Hardikar
Published July 30, 2019
Citation Information: JCI Insight. 2019;4(16):e129299. https://doi.org/10.1172/jci.insight.129299.
View: Text | PDF
Research Article Transplantation

The long noncoding RNA MALAT1 predicts human islet isolation quality

  • Text
  • PDF
Abstract

Human islet isolation is a cost- and resource-intensive program for generating islets for cell therapy in type 1 diabetes. However, only one-third of cadaveric pancreases get to clinical transplantation because of low quality/number of islets. There is a need to identify biomarkers that predict the quality of islets, before initiating their isolation. Here, we sequenced transcriptomes from 18 human islet preparations stratified into 3 groups (group 1: best quality/transplantable islets; group 2: intermediary quality; and group 3: inferior quality/nontransplantable islets) based on routine measurements, including islet purity/viability. Machine-learning algorithms involving penalized regression analyses identified 10 long noncoding RNAs (lncRNAs) that were significantly different across all group-wise comparisons (group 1 vs. group 2, group 2 vs. group 3, and group 1 vs. group 3). Two variants of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) lncRNA were common across all comparisons. We then confirmed RNA-Seq findings in a validation set of 75 human islet preparations. Finally, in 19 pancreas samples, we demonstrated that assessing the levels of MALAT1 variants alone (receiver operator characteristic curve AUC: 0.83) offers higher specificity in predicting postisolation islet quality, further improving the predictive potential for clinical islet transplantation when combined with Edmonton Donor Points/BMI/North American Islet Donor Score. We present this resource of islet quality–stratified lncRNA transcriptome data and identify MALAT1 as a biomarker that significantly enhances current selection methods for clinical-grade (good manufacturing practice–grade) islet isolation.

Authors

Wilson K.M. Wong, Guozhi Jiang, Anja E. Sørensen, Yi Vee Chew, Cody Lee-Maynard, David Liuwantara, Lindy Williams, Philip J. O’Connell, Louise T. Dalgaard, Ronald C. Ma, Wayne J. Hawthorne, Mugdha V. Joglekar, Anandwardhan A. Hardikar

×

Full Text PDF

Download PDF (3.74 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts