Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,511 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 134
  • 135
  • 136
  • …
  • 251
  • 252
  • Next →
JAK inhibitor blocks COVID-19-cytokine-induced JAK-STAT-APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids
Sarah E. Nystrom, Guojie Li, Somenath Datta, Karen Soldano, Daniel Silas, Astrid Weins, Gentzon Hall, David B. Thomas, Opeyemi A. Olabisi
Sarah E. Nystrom, Guojie Li, Somenath Datta, Karen Soldano, Daniel Silas, Astrid Weins, Gentzon Hall, David B. Thomas, Opeyemi A. Olabisi
View: Text | PDF

JAK inhibitor blocks COVID-19-cytokine-induced JAK-STAT-APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids

  • Text
  • PDF
Abstract

COVID-19 infection causes collapse of glomerular capillaries and loss of podocytes, terminating in a severe kidney disease called COVID-19 associated nephropathy (COVAN). The underlying mechanism of COVAN is unknown. We hypothesized that cytokines induced by COVID-19 trigger expression of pathogenic APOL1 via JAK-STAT signaling, resulting in podocyte loss and COVAN phenotype. Here, based on nine biopsy-proven COVAN cases, we demonstrated for the first time that APOL1 protein is abundantly expressed in podocytes and glomerular endothelial cells (GECs) of COVAN kidneys but not in controls. Moreover, a majority (77.8%) of COVAN patients carried two APOL1 risk alleles. We showed that recombinant cytokines induced by SARS-CoV-2 act synergistically to drive APOL1 expression through the JAK-STAT pathway in primary human podocytes, GECs, and kidney micro-organoids derived from a carrier of two APOL1 risk alleles but was blocked by JAK1/2-inhibitor, baricitinib. We demonstrated for the first time that cytokine-induced JAK-STAT-APOL1 signaling reduced the viability of kidney organoid podocytes but was rescued by baricitinib. Together, our results support the conclusion that COVID-19-induced cytokines are sufficient to drive COVAN-associated podocytopathy via JAK-STAT-APOL1 signaling and that JAK-inhibitor could block this pathogenic process. These findings suggest that JAK-inhibitors may have therapeutic benefits for managing cytokine-induced APOL1-mediated podocytopathy.

Authors

Sarah E. Nystrom, Guojie Li, Somenath Datta, Karen Soldano, Daniel Silas, Astrid Weins, Gentzon Hall, David B. Thomas, Opeyemi A. Olabisi

×

Targeting IL-1β as an immune preventive and therapeutic modality for K-ras mutant lung cancer
Bo Yuan, Michael J. Clowers, Walter V. Velasco, Stephen Peng, Qian Peng, Yewen Shi, Marco Ramos-Castaneda, Melody Zarghooni, Shuanying Yang, Rachel L. Babcock, Seon Hee Chang, John V. Heymach, Jianjun Zhang, Edwin J. Ostrin, Stephanie S. Watowich, Humam Kadara, Seyed Javad Moghaddam
Bo Yuan, Michael J. Clowers, Walter V. Velasco, Stephen Peng, Qian Peng, Yewen Shi, Marco Ramos-Castaneda, Melody Zarghooni, Shuanying Yang, Rachel L. Babcock, Seon Hee Chang, John V. Heymach, Jianjun Zhang, Edwin J. Ostrin, Stephanie S. Watowich, Humam Kadara, Seyed Javad Moghaddam
View: Text | PDF

Targeting IL-1β as an immune preventive and therapeutic modality for K-ras mutant lung cancer

  • Text
  • PDF
Abstract

K-ras mutant lung adenocarcinoma (KM-LUAD) is associated with abysmal prognosis and tightly linked to tumor-promoting inflammation. A human monoclonal antibody targeting proinflammatory cytokine IL-1β, Canakinumab, was found to significantly decrease the risk of lung cancer in the Canakinumab Anti-inflammatory Thrombosis Outcomes Study. Interestingly, we found high levels of IL-1β in the lungs of mice with K-rasG12D mutant tumors (CC-LR). Here we blocked IL-1β using a monoclonal anti-IL-1β antibody in cohorts of 6 or 14-week-old CC-LR mice to explore its preventive and therapeutic effect, respectively. IL-1β blockade significantly reduced lung tumor burden, which was associated with reprogramming of the lung microenvironment toward an anti-tumor phenotype characterized by increased infiltration of cytotoxic CD8+ T cells (with high IFN-γ and granzyme B but low PD-1 expression) while suppressing neutrophil and polymorphonuclear myeloid-derived suppressor cell responses. In querying the TCGA dataset, we interestingly found positive correlations between IL1B expression and infiltration of immunosuppressive polymorphonuclear cells and expression of their chemoattractant, CXCL1, and PDCD1 expressions in patients with KM-LUAD. Our data provide evidence that IL-1β blockade may serve as a preventive strategy among high-risk individuals and an alternative therapeutic approach in combination with currently available treatments for KM-LUAD.

Authors

Bo Yuan, Michael J. Clowers, Walter V. Velasco, Stephen Peng, Qian Peng, Yewen Shi, Marco Ramos-Castaneda, Melody Zarghooni, Shuanying Yang, Rachel L. Babcock, Seon Hee Chang, John V. Heymach, Jianjun Zhang, Edwin J. Ostrin, Stephanie S. Watowich, Humam Kadara, Seyed Javad Moghaddam

×

Single-cell RNA sequencing of human esophageal epithelium in homeostasis and allergic inflammation
Mark Rochman, Ting Wen, Michael Kotliar, Phillip J. Dexheimer, Netali Ben-Baruch Morgenstern, Julie M. Caldwell, Hee-Woong Lim, Marc E. Rothenberg
Mark Rochman, Ting Wen, Michael Kotliar, Phillip J. Dexheimer, Netali Ben-Baruch Morgenstern, Julie M. Caldwell, Hee-Woong Lim, Marc E. Rothenberg
View: Text | PDF

Single-cell RNA sequencing of human esophageal epithelium in homeostasis and allergic inflammation

  • Text
  • PDF
Abstract

Inflammation of the esophageal epithelium is a hallmark of eosinophilic esophagitis (EoE), an emerging chronic allergic disease. Herein, we probed human esophageal epithelial cells at single-cell resolution during homeostasis and EoE. During allergic inflammation, the epithelial differentiation program was blocked, leading to loss of KRT6high differentiated populations and expansion of TOP2high proliferating and DSPhigh, SERPINB3high transitioning populations; however, there was stability of the stem cell–enriched PDPNhigh basal epithelial compartment. This differentiation program blockade was associated with dysregulation of transcription factors, including nuclear receptor signalers, in the most differentiated epithelial cells and altered NOTCH-related cell-to-cell communication. Each epithelial population expressed genes with allergic disease risk variants, supporting their functional interplay. The esophageal epithelium differed notably between EoE in histologic remission and controls, indicating that remission is a transitory state poised to relapse. Collectively, our data uncover the dynamic nature of the inflamed human esophageal epithelium and provide a framework to better understand esophageal health and disease.

Authors

Mark Rochman, Ting Wen, Michael Kotliar, Phillip J. Dexheimer, Netali Ben-Baruch Morgenstern, Julie M. Caldwell, Hee-Woong Lim, Marc E. Rothenberg

×

Decoding the PITX2 controlled genetic network in atrial fibrillation
Jeffrey D. Steimle, Francisco J. Grisanti Canozo, Minjun Park, Zachary A. Kadow, Md. Abul Hassan Samee, James F. Martin
Jeffrey D. Steimle, Francisco J. Grisanti Canozo, Minjun Park, Zachary A. Kadow, Md. Abul Hassan Samee, James F. Martin
View: Text | PDF

Decoding the PITX2 controlled genetic network in atrial fibrillation

  • Text
  • PDF
Abstract

Atrial fibrillation (AF), the most common sustained cardiac arrhythmia and a major risk factor for stroke, often arises through ectopic electrical impulses derived from the pulmonary veins (PV). Sequence variants in enhancers controlling expression of the transcription factor PITX2, which is expressed in the cardiomyocytes (CMs) of the PV and left atrium (LA), have been implicated in AF predisposition. Single nuclei multiomic profiling of RNA and analysis of chromatin accessibility combined with spectral clustering uncovered distinct PV- and LA-enriched CM cell states. Pitx2 mutant PV and LA CMs exhibited gene expression changes consistent with cardiac dysfunction through cell-type-distinct, PITX2-directed, cis-regulatory grammars controlling target gene expression. The perturbed network targets in each CM were enriched in distinct human AF-predisposition genes, suggesting combinatorial risk for AF-genesis. Our data further reveals that PV and LA Pitx2 mutant CMs signal to endothelial and endocardial cells through BMP10 signaling with pathogenic potential. This work provides a multiomic framework for interrogating the basis of AF-predisposition in the PV of humans.

Authors

Jeffrey D. Steimle, Francisco J. Grisanti Canozo, Minjun Park, Zachary A. Kadow, Md. Abul Hassan Samee, James F. Martin

×

Placental dysfunction influences fetal monocyte subpopulation gene expression in preterm birth
Abhineet M. Sharma, Robert Birkett, Erika T. Lin, Linda M. Ernst, William A. Grobman, Suchitra Swaminathan, Hiam Abdala-Valencia, Alexander V. Misharin, Elizabeth T. Bartom, Karen K. Mestan
Abhineet M. Sharma, Robert Birkett, Erika T. Lin, Linda M. Ernst, William A. Grobman, Suchitra Swaminathan, Hiam Abdala-Valencia, Alexander V. Misharin, Elizabeth T. Bartom, Karen K. Mestan
View: Text | PDF

Placental dysfunction influences fetal monocyte subpopulation gene expression in preterm birth

  • Text
  • PDF
Abstract

The placenta is the primary organ for immune regulation, nutrient delivery, gas exchange, protection against environmental toxins, and physiologic perturbations during pregnancy. Placental inflammation and vascular dysfunction during pregnancy are associated with a growing list of prematurity-related complications. The goal of this study was to identify differences in gene expression profiles in fetal monocytes - cells that persist and differentiate postnatally - according to distinct placental histologic domains. Here, by using bulk RNA sequencing (RNA-Seq), we report that placental lesions are associated with gene expression changes in fetal monocyte subsets. Specifically, we found that fetal monocytes exposed to acute placental inflammation upregulate biological processes related to monocyte activation, monocyte chemotaxis, and platelet function while monocytes exposed to maternal vascular malperfusion lesions downregulate these processes. Additionally, we show that intermediate monocytes might be a source of mitogens, such as HBEGF, NRG1, and VEGFA, implicated in different outcomes related to prematurity. This is the first study to show that placental lesions are associated with unique changes in fetal monocytes and monocyte subsets. As fetal monocytes persist and differentiate into various phagocytic cells following birth, our study may provide insight into morbidity related to prematurity and ultimately potential therapeutic targets.

Authors

Abhineet M. Sharma, Robert Birkett, Erika T. Lin, Linda M. Ernst, William A. Grobman, Suchitra Swaminathan, Hiam Abdala-Valencia, Alexander V. Misharin, Elizabeth T. Bartom, Karen K. Mestan

×

Heteroplasmic and homoplasmic m.616T>C in mitochondria tRNAPhe promote isolated chronic kidney disease and hyperuricemia
Chengxian Xu, Lingxiao Tong, Jia Rao, Qing Ye, Yuxia Chen, Yingying Zhang, Jie Xu, Xiaoting Mao, Feilong Meng, Huijun Shen, Zhihong Lu, Xiaohui Cang, Haidong Fu, Shugang Wang, Weiyue Gu, En Yin Lai, Minxin Guan, Pingping Jiang, Jianhua Mao
Chengxian Xu, Lingxiao Tong, Jia Rao, Qing Ye, Yuxia Chen, Yingying Zhang, Jie Xu, Xiaoting Mao, Feilong Meng, Huijun Shen, Zhihong Lu, Xiaohui Cang, Haidong Fu, Shugang Wang, Weiyue Gu, En Yin Lai, Minxin Guan, Pingping Jiang, Jianhua Mao
View: Text | PDF

Heteroplasmic and homoplasmic m.616T>C in mitochondria tRNAPhe promote isolated chronic kidney disease and hyperuricemia

  • Text
  • PDF
Abstract

Inherited kidney diseases are the fifth most common cause of the end-stage renal disease. Mitochondrial dysfunction plays a vital role in the progression of inherited kidney diseases, while mt-tRNA variants and their pathogenic contributions to the kidney disease remain largely unclear. In this study, we identified the pathogenic mitochondrial tRNAPhe 616T>C mutation in three families; and documented that m.616T>C showed a high pathogenic threshold, with both heteroplasmy and homoplasmy leading to isolated chronic kidney disease and hyperuricemia without hematuria, proteinuria, or renal cyst formation. Moreover, one proband with homoplamic m.616T>C presented with end-stage renal disease as a child. No symptoms of nervous system evolvement were observed in these families. Lymphoblast cells bearing m. 616T>C exhibited swollen mitochondria, underwent active mitophagy and showed respiratory deficiency, leading to reduced mitochondrial ATP production, diminished membrane potential, and overproduction of mitochondrial reactive oxygen species. Pathogenic m. 616T>C abolished a highly conserved base-pair (A31-U39) in the anticodon stem-loop which altered the structure of mt-tRNAPhe, as confirmed by a decreased melting temperature and slower electrophoretic mobility of the mutant tRNA. Furthermore, the unstable structure of mt-tRNAPhe contributed to a shortage of steady-state mt-tRNAPhe and enhanced aminoacylation efficiency, which resulted in impaired mitochondrial RNA translation and a significant decrease in mt-DNA encoded polypeptides. Collectively, these findings provide new insights into the pathogenesis underlying inherited kidney disease caused by mitochondrial variants.

Authors

Chengxian Xu, Lingxiao Tong, Jia Rao, Qing Ye, Yuxia Chen, Yingying Zhang, Jie Xu, Xiaoting Mao, Feilong Meng, Huijun Shen, Zhihong Lu, Xiaohui Cang, Haidong Fu, Shugang Wang, Weiyue Gu, En Yin Lai, Minxin Guan, Pingping Jiang, Jianhua Mao

×

Strong off-target antibody reactivity to malarial antigens induced by RTS,S/AS01E vaccination is associated with protection
Dídac Macià, Joseph J. Campo, Gemma Moncunill, Chenjerai Jairoce, Augusto J. Nhabomba, Maximilian Mpina, Hermann Sorgho, David Dosoo, Ousmane Traore, Kwadwo A. Kusi, Nana Aba Williams, Amit Oberai, Arlo Randall, Hector Sanz, Clarissa Valim, Kwaku P. Asante, Seth Owusu-Agyei, Halidou Tinto, Selidji T. Agnandji, Simon Kariuki, Ben Gyan, Claudia Daubenberger, Benjamin Mordmüller, Paula Petrone, Carlota Dobaño
Dídac Macià, Joseph J. Campo, Gemma Moncunill, Chenjerai Jairoce, Augusto J. Nhabomba, Maximilian Mpina, Hermann Sorgho, David Dosoo, Ousmane Traore, Kwadwo A. Kusi, Nana Aba Williams, Amit Oberai, Arlo Randall, Hector Sanz, Clarissa Valim, Kwaku P. Asante, Seth Owusu-Agyei, Halidou Tinto, Selidji T. Agnandji, Simon Kariuki, Ben Gyan, Claudia Daubenberger, Benjamin Mordmüller, Paula Petrone, Carlota Dobaño
View: Text | PDF

Strong off-target antibody reactivity to malarial antigens induced by RTS,S/AS01E vaccination is associated with protection

  • Text
  • PDF
Abstract

The RTS,S/AS01E vaccine targets the circumsporozoite protein (CSP) of the Plasmodium falciparum parasite. Using protein microarrays, levels of IgG to 1,000 P. falciparum antigens were measured in 2,138 infants (age 6-12 weeks) and children (age 5-17 months) from 6 African sites of the phase 3 trial, sampled before and at four longitudinal visits after vaccination. One month post-vaccination, IgG responses to 17% of all probed antigens showed differences between RTS,S/AS01E and comparator vaccination groups, whereas no prevaccination differences were found. A small subset of antigens presented IgG levels reaching 4- to 8 fold increases in the RTS,S/AS01E group, comparable in magnitude to anti-CSP IgG levels (~11-fold increase). They were strongly cross-correlated and correlated with anti CSP levels, waning similarly over time and re-increasing with the booster dose. Such an intriguing phenomenon may be due to cross-reactivity of anti-CSP antibodies with these antigens. RTS,S/AS01E vaccinees with strong off target IgG responses had an estimated lower clinical malaria incidence after adjusting for age group, site and post-vaccination anti-CSP levels. RTS,S/AS01E-induced IgG may bind strongly not only to CSP, but to unrelated malaria antigens, and this seems to either confer, or at least be a marker of, increased protection from clinical malaria.

Authors

Dídac Macià, Joseph J. Campo, Gemma Moncunill, Chenjerai Jairoce, Augusto J. Nhabomba, Maximilian Mpina, Hermann Sorgho, David Dosoo, Ousmane Traore, Kwadwo A. Kusi, Nana Aba Williams, Amit Oberai, Arlo Randall, Hector Sanz, Clarissa Valim, Kwaku P. Asante, Seth Owusu-Agyei, Halidou Tinto, Selidji T. Agnandji, Simon Kariuki, Ben Gyan, Claudia Daubenberger, Benjamin Mordmüller, Paula Petrone, Carlota Dobaño

×

Genome-wide studies reveal factors associated with circulating uromodulin and its relations with complex diseases
Yong Li, et al.
Yong Li, et al.
View: Text | PDF

Genome-wide studies reveal factors associated with circulating uromodulin and its relations with complex diseases

  • Text
  • PDF
Abstract

UMOD is a major risk gene for monogenic and complex forms of kidney disease. The encoded kidney-specific protein uromodulin is highly abundant in urine and related to chronic kidney disease, hypertension, and pathogen defense. To gain insights into potential systemic roles, we performed genome-wide screens of circulating uromodulin using complementary antibody-based (N=13,985) and aptamer-based (N=18,070) assays. We detected 3 and 10 distinct significant (p<5e-8) loci, respectively. Integration of antibody-based results at the UMOD locus with functional genomics data (RNA-seq, ATAC-seq, Hi-C) of primary human kidney tissue highlights an upstream variant with differential accessibility and transcription in uromodulin-synthesizing kidney cells as underlying the observed cis effect. Shared association patterns with complex traits, including chronic kidney disease and blood pressure, place the PRKAG2 locus in the same pathway as UMOD. Experimental validation of the third antibody-based locus, B4GALNT2, shows that the p.Cys466Arg variant of the encoded N-acetylgalactosaminyltransferase has a loss-of-function effect leading to higher serum uromodulin levels. Aptamer-based results point to enzymes writing glycan marks present on uromodulin and to their receptors in the circulation, suggesting that this assay permits investigating uromodulin’s complex glycosylation rather than its quantitative levels. Overall, our study provides new insights into circulating uromodulin and its emerging functions.

Authors

Yong Li, Yurong Cheng, Francesco Consolato, Guglielmo Schiano, Michael R. Chong, Maik Pietzner, Ngoc Quynh H. Nguyen, Nora Scherer, Mary L. Biggs, Marcus E. Kleber, Stefan Haug, Burulça Göçmen, Marie Pigeyre, Peggy Sekula, Inga Steinbrenner, Pascal Schlosser, Christina B. Joseph, Jennifer A. Brody, Morgan E. Grams, Caroline Hayward, Ulla T. Schultheiss, Bernhard K. Krämer, Florian Kronenberg, Annette Peters, Jochen Seissler, Dominik Steubl, Cornelia Then, Matthias Wuttke, Winfried März, Kai-Uwe Eckardt, Christian Gieger, Eric Boerwinkle, Bruce M. Psaty, Josef Coresh, Peter J. Oefner, Guillaume Pare, Claudia Langenberg, Jürgen E. Scherberich, Bing Yu, Shreeram Akilesh, Olivier Devuyst, Luca Rampoldi, Anna Köttgen

×

Immune and epithelial determinants of age-related risk and alveolar injury in fatal COVID-19
Michael Chait, Mine M. Yilmaz, Shanila Shakil, Amy W. Ku, Pranay Dogra, Thomas J. Connors, Peter A. Szabo, Joshua I. Gray, Steven B. Wells, Masaru Kubota, Rei Matsumoto, Maya M.L. Poon, Mark E. Snyder, Matthew R. Baldwin, Peter A. Sims, Anjali Saqi, Donna L. Farber, Stuart P. Weisberg
Michael Chait, Mine M. Yilmaz, Shanila Shakil, Amy W. Ku, Pranay Dogra, Thomas J. Connors, Peter A. Szabo, Joshua I. Gray, Steven B. Wells, Masaru Kubota, Rei Matsumoto, Maya M.L. Poon, Mark E. Snyder, Matthew R. Baldwin, Peter A. Sims, Anjali Saqi, Donna L. Farber, Stuart P. Weisberg
View: Text | PDF

Immune and epithelial determinants of age-related risk and alveolar injury in fatal COVID-19

  • Text
  • PDF
Abstract

Respiratory failure in COVID-19 is characterized by widespread disruption of the lung’s alveolar gas exchange interface. To elucidate determinants of alveolar lung damage, we performed epithelial and immune cell profiling in lungs from 24 COVID-19 autopsies and 43 uninfected organ donors ages 18-92 years. We found marked loss of type 2 alveolar epithelial (T2AE) cells and increased peri-alveolar lymphocyte cytotoxicity in all fatal COVID-19 cases, even at early stages before typical patterns of acute lung injury are histologically apparent. In lungs from uninfected organ donors, there is also progressive loss of T2AE with increasing age which may increase susceptibility to COVID-19 mediated lung damage in older individuals. In the fatal COVID-19 cases, macrophage infiltration differed according to the histopathological pattern of lung injury. In cases with acute lung injury, we found accumulation of CD4+ macrophages that express distinctly high levels of T-cell activation and co-stimulation genes and strongly correlate with increased extent of alveolar epithelial cell depletion and CD8 T-cell cytotoxicity. Together, our results show that T2AE deficiency may underlie age-related COVID-19 risk and initiate alveolar injury shortly after infection; and we define immune cell mediators that may contribute to alveolar injury in distinct pathological stages of lethal COVID-19.

Authors

Michael Chait, Mine M. Yilmaz, Shanila Shakil, Amy W. Ku, Pranay Dogra, Thomas J. Connors, Peter A. Szabo, Joshua I. Gray, Steven B. Wells, Masaru Kubota, Rei Matsumoto, Maya M.L. Poon, Mark E. Snyder, Matthew R. Baldwin, Peter A. Sims, Anjali Saqi, Donna L. Farber, Stuart P. Weisberg

×

Bacillus Calmette–Guérin-induced trained immunity protects against SARS-CoV-2 challenge in K18-hACE2 mice
Bao-Zhong Zhang, Huiping Shuai, Hua-rui Gong, Jing-Chu Hu, Bingpeng Yan, Terrence Tsz-Tai Yuen, Ye-Fan Hu, Chaemin Yoon, Xiao-Lei Wang, Yuxin Hou, Xuansheng Lin, Xiner Huang, Renhao Li, Yee Man Au-Yeung, Wenjun Li, Bingjie Hu, Yue Chai, Ming Yue, Jian-Piao Cai, Guang Sheng Ling, Ivan Fan-Ngai Hung, Kwok-Yung Yuen, Jasper Fuk-Woo Chan, Jian-Dong Huang, Hin Chu
Bao-Zhong Zhang, Huiping Shuai, Hua-rui Gong, Jing-Chu Hu, Bingpeng Yan, Terrence Tsz-Tai Yuen, Ye-Fan Hu, Chaemin Yoon, Xiao-Lei Wang, Yuxin Hou, Xuansheng Lin, Xiner Huang, Renhao Li, Yee Man Au-Yeung, Wenjun Li, Bingjie Hu, Yue Chai, Ming Yue, Jian-Piao Cai, Guang Sheng Ling, Ivan Fan-Ngai Hung, Kwok-Yung Yuen, Jasper Fuk-Woo Chan, Jian-Dong Huang, Hin Chu
View: Text | PDF

Bacillus Calmette–Guérin-induced trained immunity protects against SARS-CoV-2 challenge in K18-hACE2 mice

  • Text
  • PDF
Abstract

SARS-CoV-2 has resulted in over 450 million confirmed cases since 2019. Although several vaccines have been certified by World Health Organization and are being vaccinated on a global scale, it has been reported that multiple SARS-CoV-2 variants can escape neutralisation by antibodies, resulting in vaccine breakthrough infections. Bacillus Calmette-Guérin (BCG) is known to induce heterologous protection based on trained immune responses. Here, we investigated whether BCG-induced trained immunity protected against SARS-CoV-2 challenge in the K18-hACE2 mouse model. Our data demonstrates that intravenous BCG vaccination induces robust trained innate immune responses and provides protection against wild-type SARS-CoV-2 as well as the B.1.617.1 and B.1.617.2 variants. Further studies suggest that myeloid cell differentiation and activation of the glycolysis pathway are associated with BCG-induced training immunity in the K18-hACE2 mice. Overall, our study provides the experimental evidence that establishes a causal relationship between intravenous BCG vaccination and protection against SARS-CoV-2 challenge.

Authors

Bao-Zhong Zhang, Huiping Shuai, Hua-rui Gong, Jing-Chu Hu, Bingpeng Yan, Terrence Tsz-Tai Yuen, Ye-Fan Hu, Chaemin Yoon, Xiao-Lei Wang, Yuxin Hou, Xuansheng Lin, Xiner Huang, Renhao Li, Yee Man Au-Yeung, Wenjun Li, Bingjie Hu, Yue Chai, Ming Yue, Jian-Piao Cai, Guang Sheng Ling, Ivan Fan-Ngai Hung, Kwok-Yung Yuen, Jasper Fuk-Woo Chan, Jian-Dong Huang, Hin Chu

×
  • ← Previous
  • 1
  • 2
  • …
  • 134
  • 135
  • 136
  • …
  • 251
  • 252
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts