Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Vascular biology

  • 244 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 14
  • 15
  • 16
  • …
  • 24
  • 25
  • Next →
Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension
Aglaia Ntokou, Jui M. Dave, Amy C. Kauffman, Maor Sauler, Changwan Ryu, John Hwa, Erica L. Herzog, Inderjit Singh, W. Mark Saltzman, Daniel M. Greif
Aglaia Ntokou, Jui M. Dave, Amy C. Kauffman, Maor Sauler, Changwan Ryu, John Hwa, Erica L. Herzog, Inderjit Singh, W. Mark Saltzman, Daniel M. Greif
View: Text | PDF

Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension

  • Text
  • PDF
Abstract

Excess macrophages and smooth muscle cells (SMCs) characterize many cardiovascular diseases, but crosstalk between these cell types is poorly defined. Pulmonary hypertension (PH) is a lethal disease in which lung arteriole SMCs proliferate and migrate, coating the normally unmuscularized distal arteriole. We hypothesized that increased macrophage platelet-derived growth factor (PDGF)-B induces pathological SMC burden in PH. Our results indicate that clodronate attenuates hypoxia-induced macrophage accumulation, distal muscularization, PH and right ventricle hypertrophy (RVH). With hypoxia exposure, macrophage Pdgfb mRNA is upregulated in mice, and LysM Cre mice carrying floxed alleles for hypoxia-inducible factor 1a, 2a, or Pdgfb have reduced macrophage Pdgfb and are protected against distal muscularization and PH. Conversely, LysM Cre, von-Hippel Lindau(flox/flox) mice have increased macrophage Hifa and Pdgfb and develop distal muscularization, PH and RVH in normoxia. Similarly, Pdgfb is upregulated in macrophages from human idiopathic or systemic sclerosis-induced pulmonary arterial hypertension patients, and macrophage-conditioned medium from these patients increases SMC proliferation and migration via PDGF-B. Finally, in mice, orotracheal administration of nanoparticles loaded with Pdgfb siRNA specifically reduces lung macrophage Pdgfb and prevents hypoxia-induced distal muscularization, PH and RVH. Thus, macrophage-derived PDGF-B is critical for pathological SMC expansion in PH, and nanoparticle-mediated inhibition of lung macrophage PDGF-B has profound implications as an interventional strategy for PH.

Authors

Aglaia Ntokou, Jui M. Dave, Amy C. Kauffman, Maor Sauler, Changwan Ryu, John Hwa, Erica L. Herzog, Inderjit Singh, W. Mark Saltzman, Daniel M. Greif

×

Complex consequences of Cantu Syndrome SUR2 variant R1154Q in genetically modified mice
Haixia Zhang, Alex M. Hanson, Tobias U. Scherf de Almeida, Christopher H. Emfinger, Conor McClenaghan, Theresa Harter, Zihan Yan, Paige E. Cooper, G. Schuyler Brown, Eric C. Arakel, Robert P. Mecham, Attila Kovacs, Carmen M. Halabi, Blanche Schwappach, Maria S. Remedi, Colin G. Nichols
Haixia Zhang, Alex M. Hanson, Tobias U. Scherf de Almeida, Christopher H. Emfinger, Conor McClenaghan, Theresa Harter, Zihan Yan, Paige E. Cooper, G. Schuyler Brown, Eric C. Arakel, Robert P. Mecham, Attila Kovacs, Carmen M. Halabi, Blanche Schwappach, Maria S. Remedi, Colin G. Nichols
View: Text | PDF

Complex consequences of Cantu Syndrome SUR2 variant R1154Q in genetically modified mice

  • Text
  • PDF
Abstract

Cantu Syndrome (CS) is caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) KATP channel subunits, the most common mutations being SUR2[R1154Q] and SUR2[R1154W], carried by ~30% of patients. We used CRISPR/Cas9 genome engineering to introduce the equivalent of human SUR2[R1154Q] mutation to the mouse ABCC9 gene. Along with minimal CS disease features, R1154Q cardiomyocytes and vascular smooth muscle showed much lower KATP current density and pinacidil activation than WT cells. Almost complete loss of SUR2-dependent protein and KATP in homozygous R1154Q ventricles revealed an underlying diazoxide-sensitive SUR1-dependent KATP channel activity. Surprisingly, sequencing of SUR2 cDNA revealed divergent transcripts, one encoding full length SUR2 protein, and the other with in-frame deletion of 93 bases (corresponding to 31 amino acids encoded by exon 28) that was present in ~40% and ~90% of transcripts from hetero- and homozygous R1154Q tissues, respectively. Recombinant expression of SUR2A protein lacking exon 28 resulted in non-functional channels. SUR2[R1154Q] CS patient tissue and iPSC-derived cardiomyocytes showed only full length SUR2 transcripts, although further studies will be required to fully test whether SUR2[R1154Q] or other CS mutations might result in aberrant splicing and variable expressivity of disease features in human CS.

Authors

Haixia Zhang, Alex M. Hanson, Tobias U. Scherf de Almeida, Christopher H. Emfinger, Conor McClenaghan, Theresa Harter, Zihan Yan, Paige E. Cooper, G. Schuyler Brown, Eric C. Arakel, Robert P. Mecham, Attila Kovacs, Carmen M. Halabi, Blanche Schwappach, Maria S. Remedi, Colin G. Nichols

×

KLF11 protects against abdominal aortic aneurysm through inhibition of endothelial cell dysfunction
Guizhen Zhao, Ziyi Chang, Yang Zhao, Yanhong Guo, Haocheng Lu, Wenying Liang, Oren Rom, Huilun Wang, Jinjian Sun, Tianqing Zhu, Yanbo Fan, Lin Chang, Bo Yang, Minerva Garcia-Barrio, Eugene Chen, Jifeng Zhang
Guizhen Zhao, Ziyi Chang, Yang Zhao, Yanhong Guo, Haocheng Lu, Wenying Liang, Oren Rom, Huilun Wang, Jinjian Sun, Tianqing Zhu, Yanbo Fan, Lin Chang, Bo Yang, Minerva Garcia-Barrio, Eugene Chen, Jifeng Zhang
View: Text | PDF

KLF11 protects against abdominal aortic aneurysm through inhibition of endothelial cell dysfunction

  • Text
  • PDF
Abstract

Abdominal aortic aneurysm (AAA) is a life-threatening degenerative vascular disease. Endothelial cell (EC) dysfunction is implicated in AAA. Our group recently demonstrated that Krüppel-like factor 11 (KLF11) plays an essential role in maintaining vascular homeostasis, at least partially through inhibition of EC inflammatory activation. However, the functions of endothelial KLF11 in AAA remain unknown. Here we found that endothelial KLF11 expression was reduced in the ECs from human aneurysms and was time-dependently decreased in the aneurysmal endothelium from both elastase- and Pcsk9/AngII-induced AAA mouse models. KLF11 deficiency in ECs markedly aggravated AAA formation, whereas EC-selective KLF11 overexpression significantly inhibited AAA formation. Mechanistically, KLF11 not only inhibited the EC inflammatory response but also diminished MMP9 expression and activity and reduced NADPH oxidase 2-mediated production of reactive oxygen species in ECs. In addition, KLF11-deficient ECs induce smooth muscle cell dedifferentiation and apoptosis. Overall, we established endothelial KLF11 as a novel factor protecting against AAA and a potential target for intervention in aortic aneurysms.

Authors

Guizhen Zhao, Ziyi Chang, Yang Zhao, Yanhong Guo, Haocheng Lu, Wenying Liang, Oren Rom, Huilun Wang, Jinjian Sun, Tianqing Zhu, Yanbo Fan, Lin Chang, Bo Yang, Minerva Garcia-Barrio, Eugene Chen, Jifeng Zhang

×

The longevity gene mIndy (I’m Not Dead, Yet) affects blood pressure through sympathoadrenal mechanisms
Diana M. Willmes, Martin Daniels, Anica Kurzbach, Stefanie Lieske, Nicole Bechmann, Tina Schumann, Christine Henke, Nermeen N. El-Agroudy, Andrey C. Da Costa Goncalves, Mirko Peitzsch, Anja Hofmann, Waldemar Kanczkowski, Kristin Kräker, Dominik N. Müller, Henning Morawietz, Andreas Deussen, Michael Wagner, Ali El-Armouche, Stephen L. Helfand, Stephan R. Bornstein, Rafael de Cabo, Michel Bernier, Graeme Eisenhofer, Jens Tank, Jens Jordan, Andreas L. Birkenfeld
Diana M. Willmes, Martin Daniels, Anica Kurzbach, Stefanie Lieske, Nicole Bechmann, Tina Schumann, Christine Henke, Nermeen N. El-Agroudy, Andrey C. Da Costa Goncalves, Mirko Peitzsch, Anja Hofmann, Waldemar Kanczkowski, Kristin Kräker, Dominik N. Müller, Henning Morawietz, Andreas Deussen, Michael Wagner, Ali El-Armouche, Stephen L. Helfand, Stephan R. Bornstein, Rafael de Cabo, Michel Bernier, Graeme Eisenhofer, Jens Tank, Jens Jordan, Andreas L. Birkenfeld
View: Text | PDF

The longevity gene mIndy (I’m Not Dead, Yet) affects blood pressure through sympathoadrenal mechanisms

  • Text
  • PDF
Abstract

Reduced expression of the plasma membrane citrate transporter INDY (acronym I’m Not Dead, Yet) extends life span in lower organisms. Deletion of the mammalian Indy (mIndy) gene in rodents improves metabolism via mechanisms akin to caloric restriction, known to lower blood pressure (BP) by sympathoadrenal inhibition. We hypothesized that mIndy deletion attenuates sympathoadrenal support of BP. Continuous arterial BP and heart rate (HR) were reduced in mINDY-KO mice. Concomitantly, urinary catecholamine content was lower, and the decreases in BP and HR by mIndy deletion were attenuated after autonomic ganglionic blockade. Catecholamine biosynthesis pathways were reduced in mINDY-KO adrenals using unbiased microarray analysis. Citrate, the main mINDY substrate, increased catecholamine content in pheochromocytoma cells, while pharmacological inhibition of citrate uptake blunted the effect. Our data suggest that deletion of mIndy reduces sympathoadrenal support of BP and HR by attenuating catecholamine biosynthesis. Deletion of mIndy recapitulates beneficial cardiovascular and metabolic responses to caloric restriction, making it an attractive therapeutic target.

Authors

Diana M. Willmes, Martin Daniels, Anica Kurzbach, Stefanie Lieske, Nicole Bechmann, Tina Schumann, Christine Henke, Nermeen N. El-Agroudy, Andrey C. Da Costa Goncalves, Mirko Peitzsch, Anja Hofmann, Waldemar Kanczkowski, Kristin Kräker, Dominik N. Müller, Henning Morawietz, Andreas Deussen, Michael Wagner, Ali El-Armouche, Stephen L. Helfand, Stephan R. Bornstein, Rafael de Cabo, Michel Bernier, Graeme Eisenhofer, Jens Tank, Jens Jordan, Andreas L. Birkenfeld

×

Nogo-B receptor-mediated Ras signaling pathway is a target for suppressing proliferating hemangioma
Wenquan Hu, Zhong Liu, Valerie Salato, Paula E. North, Joyce Bischoff, Suresh N. Kumar, Zhi Fang, Sujith Rajan, M. Mahmood Hussain, Qing R. Miao
Wenquan Hu, Zhong Liu, Valerie Salato, Paula E. North, Joyce Bischoff, Suresh N. Kumar, Zhi Fang, Sujith Rajan, M. Mahmood Hussain, Qing R. Miao
View: Text | PDF

Nogo-B receptor-mediated Ras signaling pathway is a target for suppressing proliferating hemangioma

  • Text
  • PDF
Abstract

Infantile hemangioma is a vascular tumor characterized by the rapid growth of disorganized blood vessels followed by slow spontaneous involution. The underlying molecular mechanisms that regulate hemangioma proliferation and involution still are not well elucidated. Our previous studies reported that NOGOB receptor (NGBR), a transmembrane protein, is required for the translocation of prenylated RAS from the cytosol to the plasma membrane and promotes RAS activation. Here, we show that NGBR is highly expressed in the proliferating phase of infantile hemangioma, but its expression decreases in the involuting phase, suggesting that NGBR may be involved in regulating the growth of proliferating hemangioma. Moreover, we demonstrated that NGBR knockdown in hemangioma stem cells (HemSCs) attenuates growth factors-stimulated RAS activation and diminishes the migration and proliferation of HemSCs, which is consistent with the effects of RAS knockdown in HemSCs. In vivo differentiation assay further showed that NGBR knockdown inhibits blood vessel formation and adipocyte differentiation of HemSCs in immunodeficient mice. Our data suggest that NGBR serves as a RAS modulator in controlling the growth and differentiation of HemSCs.

Authors

Wenquan Hu, Zhong Liu, Valerie Salato, Paula E. North, Joyce Bischoff, Suresh N. Kumar, Zhi Fang, Sujith Rajan, M. Mahmood Hussain, Qing R. Miao

×

Metabolism of PLTP, CETP, and LCAT on multiple HDL sizes using the Orbitrap Fusion Lumos
Sasha A. Singh, Allison B. Andraski, Hideyuki Higashi, Lang Ho Lee, Ashisha Ramsaroop, Frank M. Sacks, Masanori Aikawa
Sasha A. Singh, Allison B. Andraski, Hideyuki Higashi, Lang Ho Lee, Ashisha Ramsaroop, Frank M. Sacks, Masanori Aikawa
View: Text | PDF

Metabolism of PLTP, CETP, and LCAT on multiple HDL sizes using the Orbitrap Fusion Lumos

  • Text
  • PDF
Abstract

Recent in vivo tracer studies demonstrated that targeted mass spectrometry (MS) on the Q Exactive Orbitrap could determine the metabolism of HDL proteins 100s-fold less abundant than APOA1. In this study, we demonstrate that the Orbitrap Lumos can measure tracer in proteins whose abundances are 1000s-fold less than APOA1, specifically the lipid transfer proteins PLTP, CETP, and LCAT. Relative to the Q Exactive, the Lumos improved tracer detection by reducing tracer enrichment compression, thereby providing consistent enrichment data across multiple HDL sizes from six participants. We determined by compartmental modeling that PLTP is secreted in medium and large HDL (alpha2, 1, and 0), and is transferred from medium to larger sizes during circulation from where it is catabolized. CETP is secreted mainly in alpha1 and alpha2, and remains in these sizes during circulation. LCAT is secreted mainly in medium and small HDL (alpha2, 3, prebeta). Unlike PLTP and CETP, LCAT appearance on HDL is markedly delayed compared to APOA1 and the other transfer proteins, indicating that LCAT may reside for a time outside of systemic circulation before attaching to HDL in plasma. The determination of these lipid transfer proteins’ unique metabolic structures was possible due to advances in MS technologies.

Authors

Sasha A. Singh, Allison B. Andraski, Hideyuki Higashi, Lang Ho Lee, Ashisha Ramsaroop, Frank M. Sacks, Masanori Aikawa

×

Disturbed flow–induced Gs-mediated signaling protects against endothelial inflammation and atherosclerosis
Akiko Nakayama, Julián Albarrán-Juárez, Guozheng Liang, Kenneth Anthony Roquid, András Iring, Sarah Tonack, Min Chen, Oliver J. Müller, Lee S. Weinstein, Stefan Offermanns
Akiko Nakayama, Julián Albarrán-Juárez, Guozheng Liang, Kenneth Anthony Roquid, András Iring, Sarah Tonack, Min Chen, Oliver J. Müller, Lee S. Weinstein, Stefan Offermanns
View: Text | PDF

Disturbed flow–induced Gs-mediated signaling protects against endothelial inflammation and atherosclerosis

  • Text
  • PDF
Abstract

Atherosclerosis develops preferentially in areas of the arterial system, in which blood flow is disturbed. Exposure of endothelial cells to disturbed flow has been shown to induce inflammatory signaling, including NF-κB activation, which leads to the expression of leukocyte adhesion molecules and chemokines. Here, we show that disturbed flow promotes the release of adrenomedullin from endothelial cells, which in turn activates its Gs-coupled receptor calcitonin receptor–like receptor (CALCRL). This induces antiinflammatory signaling through cAMP and PKA, and it results in reduced endothelial inflammation in vitro and in vivo. Suppression of endothelial expression of Gαs, the α subunit of the G-protein Gs; CALCRL; or adrenomedullin leads to increased disturbed flow–induced inflammatory signaling in vitro and in vivo. Furthermore, mice with induced endothelial-specific deficiency of Gαs, CALCRL, or adrenomedullin show increased atherosclerotic lesions. Our data identify an antiinflammatory signaling pathway in endothelial cells stimulated by disturbed flow and suggest activation of the endothelial adrenomedullin/CALCRL/Gs system as a promising approach to inhibit progression of atherosclerosis.

Authors

Akiko Nakayama, Julián Albarrán-Juárez, Guozheng Liang, Kenneth Anthony Roquid, András Iring, Sarah Tonack, Min Chen, Oliver J. Müller, Lee S. Weinstein, Stefan Offermanns

×

Deficiency of Notch signaling in pericytes results in arteriovenous malformations
Taliha Nadeem, Wil Bogue, Bianca Bigit, Henar Cuervo
Taliha Nadeem, Wil Bogue, Bianca Bigit, Henar Cuervo
View: Text | PDF

Deficiency of Notch signaling in pericytes results in arteriovenous malformations

  • Text
  • PDF
Abstract

Arteriovenous malformations (AVMs) are high-flow lesions directly connecting arteries and veins. In the brain, AVM rupture can cause seizures, stroke, and death. Patients with AVMs exhibit reduced coverage of the vessels by pericytes, the mural cells of microvascular capillaries; however, the mechanism underlying this pericyte reduction and its association with AVM pathogenesis remains unknown. Notch signaling has been proposed to regulate critical pericyte functions. We hypothesized that Notch signaling in pericytes is crucial to maintain pericyte homeostasis and prevent AVM formation. We inhibited Notch signaling specifically in perivascular cells and analyzed the vasculature of these mice. The retinal vessels of mice with deficient perivascular Notch signaling developed severe AVMs, together with a significant reduction in pericytes and vascular smooth muscle cells (vSMC) in the arteries, while vSMCs were increased in the veins. Vascular malformations and pericyte loss were also observed in the forebrain of embryonic mice deficient for perivascular Notch signaling. Moreover, the loss of Notch signaling in pericytes downregulated Pdgfrb levels and increased pericyte apoptosis, pointing to a critical role for Notch in pericyte survival. Overall, our findings reveal a mechanism of AVM formation and highlight the Notch signaling pathway as an essential mediator in this process.

Authors

Taliha Nadeem, Wil Bogue, Bianca Bigit, Henar Cuervo

×

MicroRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production
Jianjie Dong, Ming He, Jie Li, Ariane R. Pessentheiner, Chen Wang, Jin Zhang, Yameng Sun, Wei-Ting Wang, Yuqing Zhang, Junhui Liu, Shen-Chih Wang, Po-Hsun Huang, Philip L.S.M. Gordts, Zu-Yi Yuan, Sotirios Tsimikas, John Y-J Shyy
Jianjie Dong, Ming He, Jie Li, Ariane R. Pessentheiner, Chen Wang, Jin Zhang, Yameng Sun, Wei-Ting Wang, Yuqing Zhang, Junhui Liu, Shen-Chih Wang, Po-Hsun Huang, Philip L.S.M. Gordts, Zu-Yi Yuan, Sotirios Tsimikas, John Y-J Shyy
View: Text | PDF

MicroRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production

  • Text
  • PDF
Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects cholesterol homeostasis by targeting hepatic low-density lipoprotein receptor (LDLR) for lysosomal degradation. Clinically, PCSK9 inhibitors effectively reduce LDL cholesterol (LDL-C) level and the incidence of cardiovascular events. Because microRNAs (miRs) are integral regulators of cholesterol homeostasis, we investigated the involvement of miR-483 in regulating LDL-C metabolism. Using in silico analysis, we predicted that miR-483-5p targets the 3’UTR of PCSK9 mRNA. In HepG2 cells, miR-483-5p targeted the PCSK9 3’UTR, leading to decreased PCSK9 protein and mRNA expression, increased LDLR expression and enhanced LDL-C uptake. In hyperlipidemic mice and humans, serum levels of total cholesterol and LDL-C were inversely correlated with miR-483-5p level. In mice, hepatic miR-483 overexpression increased LDLR level by targeting Pcsk9, with a significant reduction in plasma total cholesterol and LDL-C levels. Mechanistically, the cholesterol-lowering effect of miR-483-5p was significant in mice receiving AAV8 PCSK9-3’UTR but not Ldlr-knockout mice or mice receiving AAV8 PCSK9-3’UTR (deltaBS) with the miR-483-5p targeting site deleted. Thus, exogenously administered miR-483 or similarly optimized compounds have potential to ameliorate hypercholesterolemia.

Authors

Jianjie Dong, Ming He, Jie Li, Ariane R. Pessentheiner, Chen Wang, Jin Zhang, Yameng Sun, Wei-Ting Wang, Yuqing Zhang, Junhui Liu, Shen-Chih Wang, Po-Hsun Huang, Philip L.S.M. Gordts, Zu-Yi Yuan, Sotirios Tsimikas, John Y-J Shyy

×

Smooth muscle-derived progenitor cell myofibroblast differentiation through KLF4 downregulation promotes arterial remodeling and fibrosis
Sizhao Lu, Austin J. Jolly, Keith A. Strand, Allison M. Dubner, Marie F. Mutryn, Karen S. Moulton, Raphael A. Nemenoff, Mark W. Majesky, Mary C.M. Weiser-Evans
Sizhao Lu, Austin J. Jolly, Keith A. Strand, Allison M. Dubner, Marie F. Mutryn, Karen S. Moulton, Raphael A. Nemenoff, Mark W. Majesky, Mary C.M. Weiser-Evans
View: Text | PDF

Smooth muscle-derived progenitor cell myofibroblast differentiation through KLF4 downregulation promotes arterial remodeling and fibrosis

  • Text
  • PDF
Abstract

Resident vascular adventitial SCA1(+) progenitor (AdvSca1) cells are essential in vascular development and injury. However, the heterogeneity of AdvSca1 cells presents a unique challenge in understanding signaling pathways orchestrating their behavior in homeostasis and injury responses. Using smooth muscle cell (SMC) lineage tracing models, we identified a subpopulation of AdvSca1 cells (AdvSca1-SM) originating from mature SMCs that undergo reprogramming in situ and exhibit a multipotent phenotype. Here we employed lineage tracing and RNA sequencing to define the signaling pathways regulating SMC-to-AdvSca1-SM cell reprogramming and AdvSca1-SM progenitor cell phenotype. Unbiased hierarchical clustering revealed that genes related to hedgehog/WNT/beta-catenin signaling are significantly enriched in AdvSca1-SM cells, emphasizing the importance of this signaling axis in the reprogramming event. Leveraging AdvSca1-SM-specific expression of Gli1, we generated Gli1-CreERT2-ROSA26-YFP reporter mice to selectively track AdvSca1-SM cells. We demonstrated that physiologically relevant vascular injury or AdvSca1-SM cell-specific Klf4 depletion facilitated the proliferation and differentiation of AdvSca1-SM cells to a pro-fibrotic myofibroblast phenotype rather than macrophages. Surprisingly, AdvSca1-SM cells selectively contributed to adventitial remodeling and fibrosis, but little to neointima formation. Together, these findings strongly support therapeutics aimed at preserving the AdvSca1-SM cell phenotype as a viable anti-fibrotic approach.

Authors

Sizhao Lu, Austin J. Jolly, Keith A. Strand, Allison M. Dubner, Marie F. Mutryn, Karen S. Moulton, Raphael A. Nemenoff, Mark W. Majesky, Mary C.M. Weiser-Evans

×
  • ← Previous
  • 1
  • 2
  • …
  • 14
  • 15
  • 16
  • …
  • 24
  • 25
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts