Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension
Aglaia Ntokou, … , W. Mark Saltzman, Daniel M. Greif
Aglaia Ntokou, … , W. Mark Saltzman, Daniel M. Greif
Published February 16, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.139067.
View: Text | PDF
Research In-Press Preview Pulmonology Vascular biology

Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension

  • Text
  • PDF
Abstract

Excess macrophages and smooth muscle cells (SMCs) characterize many cardiovascular diseases, but crosstalk between these cell types is poorly defined. Pulmonary hypertension (PH) is a lethal disease in which lung arteriole SMCs proliferate and migrate, coating the normally unmuscularized distal arteriole. We hypothesized that increased macrophage platelet-derived growth factor (PDGF)-B induces pathological SMC burden in PH. Our results indicate that clodronate attenuates hypoxia-induced macrophage accumulation, distal muscularization, PH and right ventricle hypertrophy (RVH). With hypoxia exposure, macrophage Pdgfb mRNA is upregulated in mice, and LysM Cre mice carrying floxed alleles for hypoxia-inducible factor 1a, 2a, or Pdgfb have reduced macrophage Pdgfb and are protected against distal muscularization and PH. Conversely, LysM Cre, von-Hippel Lindau(flox/flox) mice have increased macrophage Hifa and Pdgfb and develop distal muscularization, PH and RVH in normoxia. Similarly, Pdgfb is upregulated in macrophages from human idiopathic or systemic sclerosis-induced pulmonary arterial hypertension patients, and macrophage-conditioned medium from these patients increases SMC proliferation and migration via PDGF-B. Finally, in mice, orotracheal administration of nanoparticles loaded with Pdgfb siRNA specifically reduces lung macrophage Pdgfb and prevents hypoxia-induced distal muscularization, PH and RVH. Thus, macrophage-derived PDGF-B is critical for pathological SMC expansion in PH, and nanoparticle-mediated inhibition of lung macrophage PDGF-B has profound implications as an interventional strategy for PH.

Authors

Aglaia Ntokou, Jui M. Dave, Amy C. Kauffman, Maor Sauler, Changwan Ryu, John Hwa, Erica L. Herzog, Inderjit Singh, W. Mark Saltzman, Daniel M. Greif

×

Full Text PDF | Download (789.91 KB)

Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts