Recessive PJVK mutations that cause a deficiency of pejvakin, a protein expressed in both sensory hair cells and first-order neurons of the inner ear, are an important cause of hereditary hearing impairment. Patients with PJVK mutations garner limited benefits from cochlear implantation; thus, alternative biological therapies may be required to address this clinical difficulty. The synthetic adeno-associated viral vector Anc80L65, with its wide tropism and high transduction efficiency in various inner ear cells, may provide a solution. We delivered the PJVK transgene to the inner ear of Pjvk mutant mice using the synthetic Anc80L65 vector. We observed robust exogenous pejvakin expression in the hair cells and neurons of the cochlea and vestibular organs. Subsequent morphologic and audiologic studies demonstrated significant restoration of spiral ganglion neuron density and hair cells in the cochlea, along with partial recovery of sensorineural hearing impairment. In addition, we observed a recovery of vestibular ganglion neurons and balance function to WT levels. Our study demonstrates the utility of Anc80L65-mediated gene delivery in Pjvk mutant mice and provides insights into the potential of gene therapy for PJVK-related inner ear deficits.
Ying-Chang Lu, Yi-Hsiu Tsai, Yen-Huei Chan, Chin-Ju Hu, Chun-Ying Huang, Ru Xiao, Chuan-Jen Hsu, Luk H. Vandenberghe, Chen-Chi Wu, Yen-Fu Cheng
Deficiency of glycogen debranching enzyme in glycogen storage disease type III (GSD III) results in excessive glycogen accumulation in multiple tissues, primarily the liver, heart, and skeletal muscle. We recently reported that an adeno-associated virus (AAV) vector expressing a bacterial debranching enzyme (Pullulanase) driven by the ubiquitous CMV enhancer/chicken β-actin (CB) promoter cleared glycogen in major affected tissues of infant GSD IIIa mice. In this study, we developed a novel dual promoter consisting of a liver-specific promoter (LSP) and the CB promoter for gene therapy in adult GSD IIIa mice. Ten-week treatment with an AAV vector containing the LSP-CB dual promoter in adult GSD IIIa mice significantly increased Pullulanase expression and reduced glycogen contents in the liver (-60%), heart (-76%), and skeletal muscle (-63%), accompanied by the reversal of liver fibrosis, improved muscle function, and significant decrease in plasma biomarkers alanine aminotransferase, aspartate aminotransferase, and creatine kinase. Compared to the CB promoter, the dual promoter effectively decreased Pullulanase-induced cytotoxic T lymphocyte responses and enabled persistent therapeutic gene expression in adult GSD IIIa mice. Future studies are needed to determine the long-term durability of the dual promoter mediated expression of Pullulanase in adult GSD IIIa mice and in large animal models.
Jeong-A Lim, Priya S. Kishnani, Baodong Sun
BACKGROUND. A patient-derived organoid (PDO) platform may serve as a promising tool for translational cancer research. In this study, we evaluated PDO’s ability to predict clinical response to gastrointestinal (GI) cancers. METHODS. We generated PDOs from primary and metastatic lesions of patients with GI cancers, including pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and cholangiocarcinoma. We compared PDO response with the observed clinical response for donor patients to the same treatments. RESULTS. We reported an approximately 80% concordance rate between PDO and donor tumor response. Importantly, we found a profound influence of culture media on PDO phenotype, where we showed significant difference in response to standard of care chemotherapies, distinct morphologies, and transcriptomes between media within the same PDOs cultures. CONCLUSION. While we demonstrate a high concordance rate between donor tumor and PDO, these studies also showed the important role of culture media when using PDOs to inform treatment selection and predict response across a spectrum of GI cancers. TRIAL REGISTRATION. Not applicable. FUNDING. This work was supported by the Joan F. & Richard A. Abdoo Family Fund in Colorectal Cancer Research, CA265050, GI Cancer program of the Mayo Clinic Cancer Center, Mayo Clinic SPORE in Pancreatic Cancer, Center of Individualized Medicine (Mayo Clinic), Department of Laboratory Medicine and Pathology (Mayo Clinic), Incyte Pharmaceuticals and Mayo Clinic Hepatobiliary SPORE, a University of Minnesota-Mayo Clinic Partnership grant, and the Early Therapeutic program (Department of Oncology, Mayo Clinic).
Tara L. Hogenson, Hao Xie, William J. Phillips, Merih D. Toruner, Jenny J. Li, Isaac P. Horn, Devin J. Kennedy, Luciana L. Almada, David L. Marks, Ryan M. Carr, Murat Toruner, Ashley N. Sigafoos, Amanda N. Koenig-Kappes, Rachel L.O. Olson, Ezequiel J. Tolosa, Cheng Zhang, Hu Li, Jason D. Doles, Jonathan Bleeker, Michael T. Barrett, James H. Boyum, Benjamin R. Kipp, Amit Mahipal, Joleen M. Hubbard, Temperance J. Scheffler Hanson, Gloria M. Petersen, Surendra Dasari, Ann L. Oberg, Mark J. Truty, Rondell P. Graham, Michael J. Levy, Mojun Zhu, Daniel D. Billadeau, Alex A. Adjei, Nelson Dusetti, Juan L. Iovanna, Tanios S. Bekaii-Saab, Wen Wee Ma, Martin E. Fernandez-Zapico
No disease-modifying drug exists for osteoarthritis (OA). Despite success in animal models, candidate drugs continue to fail in clinical trials due to the unmapped interpatient heterogeneity and disease complexity. We have utilized a single-cell cytometry-by-time-of-flight (cyTOF) based platform to precisely outline the effects of candidate drugs on human OA chondrocytes. OA chondrocytes harvested from patients undergoing total knee arthroplasty were treated with two drugs, an NF-κB pathway inhibitor, BMS-345541, and a chondroinductive small molecule, Kartogenin, that showed preclinical success in animal models for OA. cyTOF conducted with 30 metal isotope-labeled antibodies parsed the effects of the drugs on inflammatory, senescent, and chondroprogenitor populations. The NF-κB pathway inhibition decreased the expression of NF-κB, HIF2A and iNOS in multiple chondrocyte clusters and significantly depleted four p16ink4a expressing senescent populations including NOTCH1+STRO1+ chondroprogenitors. While Kartogenin also affected select p16ink4a expressing senescent clusters, there was a less discernible effect on chondroprogenitor populations. Overall, BMS-345541 elicited a uniform drug response in all patients while only a few responded to Kartogenin. These studies demonstrate that a single-cell cyTOF-based drug screening platform can provide insights into patient response assessment and their stratification.
Neety Sahu, Fiorella C. Grandi, Nidhi Bhutani
Intravenous administration of a high affinity carbon monoxide (CO)-binding molecule, recombinant neuroglobin, can improve survival in CO poisoning mouse models. The current study aims to understand how biochemical variables of the scavenger determine the CO removal from the RBCs by evaluating three readily available hemoproteins, 2,3-diphosphoglycerate stripped human hemoglobin (StHb), N-ethylmaleimide modified hemoglobin (NEMHb), and equine myoglobin (Mb). These molecules efficiently sequester CO from hemoglobin in erythrocytes in vitro. A kinetic model was developed to predict the CO binding efficacy for hemoproteins, based on their measured in vitro oxygen and CO binding affinities, suggesting that the therapeutic efficacy of hemoproteins for CO poisoning relates to a high M value, which is the binding affinity for CO relative to oxygen (KA,CO/KA,O2). In a lethal CO poisoning mouse model, StHb, NEMHb, and Mb improved survival by 100%, 100%, and 60%, respectively, compared with saline controls, and were well tolerated in 48-hour toxicology assessments. In conclusion, both StHb and NEMHb have high CO binding affinities and M values and scavenge CO efficiently in vitro and in vivo, highlighting their therapeutic potential for point-of-care antidotal therapy of CO poisoning.
Qinzi Xu, Jason J. Rose, Xiukai Chen, Ling Wang, Anthony W. DeMartino, Matthew R. Dent, Sagarika Tiwari, Kaitlin Bocian, Xueyin N. Huang, Qin Tong, Charles F. McTiernan, Lanping Guo, Elmira Alipour, Trevor C. Jones, Kamil Burak Ucer, Daniel B. Kim-Shapiro, Jesus Tejero, Mark T. Gladwin
Therapy with radiation plus cisplatin kills HPV+ oropharyngeal squamous cell carcinomas (OPSCCs) by increasing reactive oxygen species beyond cellular antioxidant capacity. To explore why these standard treatments fail for some patients, we evaluated whether the variation in HPV oncoprotein levels among HPV+ OPSCCs affects mitochondrial metabolism, a source of antioxidant capacity. In cell line and patient-derived xenograft models, levels of HPV full-length E6 (fl-E6) inversely correlated with oxidative phosphorylation, antioxidant capacity, and therapy resistance, and fl-E6 was the only HPV oncoprotein to display such correlations. Ectopically expressing fl-E6 in models with low baseline levels reduced mitochondrial mass, depleted antioxidant capacity, and sensitized to therapy. In this setting, fl-E6 repressed the peroxisome proliferator–activated receptor gamma co-activator 1α/estrogen-related receptor α (PGC-1α/ERRα) pathway for mitochondrial biogenesis by reducing p53-dependent PGC-1α transcription. Concordant observations were made in 3 clinical cohorts, where expression of mitochondrial components was higher in tumors of patients with reduced survival. These tumors contained the lowest fl-E6 levels, the highest p53 target gene expression, and an activated PGC-1α/ERRα pathway. Our findings demonstrate that E6 can potentiate treatment responses by depleting mitochondrial antioxidant capacity and provide evidence for low E6 negatively affecting patient survival. E6’s interaction with the PGC-1α/ERRα axis has implications for predicting and targeting treatment resistance in OPSCC.
Malay K. Sannigrahi, Pavithra Rajagopalan, Ling Lai, Xinyi Liu, Varun Sahu, Hiroshi Nakagawa, Jalal B. Jalaly, Robert M. Brody, Iain M. Morgan, Bradford E. Windle, Xiaowei Wang, Phyllis A. Gimotty, Daniel P. Kelly, Elizabeth A. White, Devraj Basu
Pancreatitis, the inflammatory disorder of the pancreas, has no specific therapy. Genetic, biochemical and animal model studies revealed that trypsin plays a central role in the onset and progression of pancreatitis. Here, we performed biochemical and preclinical mouse experiments to offer proof of concept that orally administered dabigatran etexilate can inhibit pancreatic trypsins and shows therapeutic efficacy in trypsin-dependent pancreatitis. We found that dabigatran competitively inhibited all human and mouse trypsin isoforms (Ki range 10-79 nM) and dabigatran plasma concentrations in mice given oral dabigatran etexilate well exceeded the Ki of trypsin inhibition. In the T7K24R trypsinogen mutant mouse model, a single oral gavage of dabigatran etexilate was effective against cerulein-induced progressive pancreatitis with a high degree of histological normalization. In contrast, spontaneous pancreatitis in T7D23A mice, which carry a more aggressive trypsinogen mutation, was not ameliorated by dabigatran etexilate, given either as daily gavages or by mixing it with solid chow. Taken together, our observations confirmed that benzamidine derivatives such as dabigatran are potent trypsin inhibitors and show therapeutic activity against trypsin-dependent pancreatitis in T7K24R mice. Lack of efficacy in T7D23A mice is likely related to the more severe pathology and insufficient drug concentrations in the pancreas.
Zsófia G. Pesei, Zsanett Jancsó, Alexandra Demcsák, Balázs Csaba Németh, Sandor Vajda, Miklós Sahin-Tóth
Metastatic pancreatic cancer (PDAC) has a poor clinical outcome with a 5-year survival rate below 3%. Recent transcriptome profiling of PDAC biopsies has identified 2 clinically distinct subtypes — the “basal-like” (BL) subtype with poor prognosis and therapy resistance compared with the less aggressive and drug-susceptible “classical” (CLA) subtype. However, the mechanistic events and environmental factors that promote the BL subtype identity are not very clear. Using preclinical models, patient-derived xenografts, and FACS-sorted PDAC patient biopsies, we report here that the axon guidance receptor, roundabout guidance receptor 3 (ROBO3), promotes the BL metastatic program via a potentially unique AXL/IL-6/phosphorylated STAT3 (p-STAT3) regulatory axis. RNA-Seq identified a ROBO3-mediated BL-specific gene program, while tyrosine kinase profiling revealed AXL as the key mediator of the p-STAT3 activation. CRISPR/dCas9-based ROBO3 silencing disrupted the AXL/p-STAT3 signaling axis, thereby halting metastasis and enhancing therapy sensitivity. Transcriptome analysis of resected patient tumors revealed that AXLhi neoplastic cells associated with the inflammatory stromal program. Combining AXL inhibitor and chemotherapy substantially restored a CLA phenotypic state and reduced disease aggressiveness. Thus, we conclude that a ROBO3-driven hierarchical network determines the inflammatory and prometastatic programs in a specific PDAC subtype.
Niklas Krebs, Lukas Klein, Florian Wegwitz, Elisa Espinet, Hans Carlo Maurer, Mengyu Tu, Frederike Penz, Stefan Küffer, Xingbo Xu, Hanibal Bohnenberger, Silke Cameron, Marius Brunner, Albrecht Neesse, Uday Kishore, Elisabeth Hessmann, Andreas Trumpp, Philipp Ströbel, Rolf A. Brekken, Volker Ellenrieder, Shiv K. Singh
Development of resistance to chemo- and immuno- therapies often occurs following treatment of melanoma brain metastasis (MBM). In this scenario, astrocytes cooperate towards MBM progression by upregulating secreted-factors, amongst which we found that monocyte chemoattractant protein-1 (MCP-1) and its receptors, CCR2 and CCR4, are overexpressed in activated astrocytes and in brain metastatic melanoma cells compared to primary lesions. We show that melanoma cells alter astrocytes-secretome and evoke MCP-1 expression and secretion, which in turn enhance vascular hyperpermeability and proliferation, migration, and invasion of CCR2-expressing melanoma cells, while inhibiting MCP-1 rescued this phenotype. Pharmacological or molecular inhibition of MCP-1/CCR2 in MBM mouse model activates an anti-tumor immune-mediated response as revealed by the enhanced infiltration of cytotoxic CD8+ T cells, attenuated immunosuppressive phenotype of tumor-associated macrophages, and reduced infiltration of regulatory T cells, leading to inhibition of MBM progression and prolonged survival. In addition, blocking this key target in MBM, improved the therapeutic response of anti-PD-1 immunotherapy, regardless of the tumor mutational load. These results show that the MCP-1/CCR2 axis polarizes the brain microenvironment towards an anti-inflammatory/pro-tumorigenic phenotype, highlighting the therapeutic relevance of this pathway as a potential immune checkpoint in MBM.
Sabina Pozzi, Anna Scomparin, Dikla Ben-Shushan, Eilam Yeini, Paula Ofek, Alessio D. Nahmad, Shelly Soffer, Ariel Ionescu, Antonella Ruggiero, Adi Barzel, Henry Brem, Thomas M. Hyde, Iris Barshack, Sanju Sinha, Eytan Ruppin, Tomer Weiss, Asaf Madi, Eran Perlson, Inna Slutsky, Helena F. Florindo, Ronit Satchi-Fainaro
Despite intensive therapy, children with high-risk neuroblastoma are at risk of treatment failure. We applied a multi-omic system approach to evaluate metabolic vulnerabilities in human neuroblastoma. We combined metabolomics, CRISPR screening and transcriptomic data across >700 solid tumor cell lines and identified dihydroorotate dehydrogenase (DHODH), a critical enzyme in pyrimidine synthesis, as a potential treatment target. Of note, DHODH inhibition is currently under clinical investigation in patients with hematologic malignancies. In neuroblastoma, DHODH expression was identified as an independent risk factor for aggressive disease, and high DHODH levels correlated to worse overall and event-free survival. A subset of tumors with the highest DHODH expression was associated with a dismal prognosis, with a 5-year survival of <10%. In xenograft and transgenic neuroblastoma mouse models treated with the DHODH inhibitor brequinar, tumor growth was dramatically reduced, and survival was extended. Furthermore, brequinar treatment was shown to reduce the expression of MYC targets in three different neuroblastoma models in vivo. A combination of brequinar and temozolomide was curative in the majority of transgenic TH-MYCN neuroblastoma mice, indicating a highly active clinical combination therapy. Overall, DHODH inhibition combined with temozolomide has therapeutic potential in neuroblastoma and we propose this combination for clinical testing.
Thale Kristin Olsen, Cecilia Dyberg, Bethel Tesfai Embaie, Adele M. Alchahin, Jelena Milosevic, Jane Ding, Jörg Otte, Conny Tümmler, Ida Hed Myrberg, Ellen M. Westerhout, Jan Koster, Rogier Versteeg, Han-Fei Ding, Per Kogner, John Inge Johnsen, David B. Sykes, Ninib Baryawno
No posts were found with this tag.