Uterine fibroids (leiomyomas) affect Black women disproportionately in terms of prevalence, incidence, and severity of symptoms. The causes of this racial disparity are essentially unknown. We hypothesized that myometria of Black women are more susceptible to developing fibroids and examined the transcriptomic and DNA methylation profiles of myometria and fibroids from Black and White women for comparison. Myometrial samples cluster by race in both their transcriptome and DNA methylation profiles, whereas fibroid samples only cluster by race in the latter. More differentially expressed genes (DEGs) were detected in the Black and White myometrial sample comparison than in the fibroid comparison. Leiomyoma gene set expression analysis identified four clusters of DEGs, including a cluster of 24 genes with higher expression in myometrial samples from Black women. One of the DEGs in this group, VWF, was significantly hypomethylated at two CpG probes that are near a putative enhancer site in myometrial samples from Black women and in all fibroids and that correlate with VWF expression levels. These results suggest that the molecular basis for the disparity in fibroid disease between Black and White women could be found in the myometria before fibroid development and not in the fibroids themselves.
Emmanuel N. Paul, Joshua A. Grey, Tyler J. Carpenter, Zachary B. Madaj, Kin H. Lau, Scott A. Givan, Gregory W. Burns, Ronald L. Chandler, Ganesa R. Wegienka, Hui Shen, Jose M. Teixeira
Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. One of every 4 preterm neonates is born to a mother with intra-amniotic inflammation driven by invading bacteria. However, the molecular mechanisms underlying this hostile immune response remain unclear. Here, we used a translationally relevant model of preterm birth in Nlrp3-deficient and -sufficient pregnant mice to identify what we believe is a previously unknown dual role for the NLRP3 pathway in the fetal and maternal signaling required for the premature onset of the labor cascade leading to fetal injury and neonatal death. Specifically, the NLRP3 sensor molecule and/or inflammasome is essential for triggering intra-amniotic and decidual inflammation, fetal membrane activation, uterine contractility, and cervical dilation. NLRP3 also regulates the functional status of neutrophils and macrophages in the uterus and decidua, without altering their influx, as well as maternal systemic inflammation. Finally, both embryo transfer experimentation and heterozygous mating systems provided mechanistic evidence showing that NLRP3 signaling in both the fetus and the mother is required for the premature activation of the labor cascade. These data provide insights into the mechanisms of fetal-maternal dialog in the syndrome of preterm labor and indicate that targeting the NLRP3 pathway could prevent adverse perinatal outcomes.
Kenichiro Motomura, Roberto Romero, Jose Galaz, Li Tao, Valeria Garcia-Flores, Yi Xu, Bogdan Done, Marcia Arenas-Hernandez, Derek Miller, Pedro Gutierrez-Contreras, Marcelo Farias-Jofre, Siddhesh Aras, Lawrence I. Grossman, Adi L. Tarca, Nardhy Gomez-Lopez
Accurate estimate of fetal maturity could provide individualized guidance for delivery of complicated pregnancies. However, current methods are invasive, have low accuracy, and are limited to fetal lung maturation. To identify diagnostic gestational biomarkers, we performed transcriptomic profiling of lung and brain, as well as cell-free RNA from amniotic fluid of preterm and term rhesus macaque fetuses. These data identify new and prior associated gestational age differences in distinct lung and neuronal cell populations when compared to existing single-cell and bulk RNA-Seq data. Comparative analyses found hundreds of genes coincidently induced in lung and amniotic fluid, and dozens in brain and amniotic fluid. This data enabled creation of computational models that accurately predicted lung compliance from amniotic fluid and lung transcriptome of preterm fetuses treated with antenatal corticosteroids. Importantly, antenatal steroids induced off target gene expression changes in the brain, impinging upon synaptic transmission, neuronal and glial maturation, which could have long term consequences on brain development. Cell-free RNA in amniotic fluid may provide a substrate of global fetal maturation markers for personalized management of at-risk pregnancies.
Augusto F. Schmidt, Daniel Schnell, Kenneth P. Eaton, Kashish Chetal, Paranthaman S. Kannan, Lisa A. Miller, Claire A. Chougnet, Daniel T. Swarr, Alan H. Jobe, Nathan Salomonis, Beena D. Kamath-Rayne
Although published studies have demonstrated that interferon epsilon (IFNε) has a crucial role in regulating protective immunity in the mouse female reproductive tract (mFRT), expression and regulation of IFNε in the human female reproductive tract (hFRT) have not been characterised. To characterise human IFNε, we obtained hFRT samples from a well- characterized cohort of women, enabling us to comprehensively assess ex vivo IFNε expression in the hFRT at various stages of the menstrual cycle. We found that among the various types of IFNs, IFNε is uniquely selectively and constitutively expressed in the hFRT epithelium. It has distinct expression patterns in the surface and glandular epithelia of the upper hFRT compared with basal layers of the stratified squamous epithelia of the lower hFRT. There is cyclical variation of IFNε expression in the endometrial epithelium of the upper hFRT and not in the distal FRT, consistent with selective endometrial expression of the progesterone receptor and regulation of the IFNE promoter by progesterone. Since we show IFNε stimulates important protective IFN-regulated genes (IRGs) in FRT epithelium, this characterisation is a key element in understanding the mechanisms of hormonal control of mucosal immunity.
Nollaig M. Bourke, Sharon L. Achilles, Stephanie U-Shane Huang, Helen E. Cumming, San S. Lim, Irene Papageorgiou, Linden J. Gearing, Ross Chapman, Suruchi Thakore, Niamh E. Mangan, Sam Mesiano, Paul J. Hertzog
The placenta is the primary organ for immune regulation, nutrient delivery, gas exchange, protection against environmental toxins, and physiologic perturbations during pregnancy. Placental inflammation and vascular dysfunction during pregnancy are associated with a growing list of prematurity-related complications. The goal of this study was to identify differences in gene expression profiles in fetal monocytes - cells that persist and differentiate postnatally - according to distinct placental histologic domains. Here, by using bulk RNA sequencing (RNA-Seq), we report that placental lesions are associated with gene expression changes in fetal monocyte subsets. Specifically, we found that fetal monocytes exposed to acute placental inflammation upregulate biological processes related to monocyte activation, monocyte chemotaxis, and platelet function while monocytes exposed to maternal vascular malperfusion lesions downregulate these processes. Additionally, we show that intermediate monocytes might be a source of mitogens, such as HBEGF, NRG1, and VEGFA, implicated in different outcomes related to prematurity. This is the first study to show that placental lesions are associated with unique changes in fetal monocytes and monocyte subsets. As fetal monocytes persist and differentiate into various phagocytic cells following birth, our study may provide insight into morbidity related to prematurity and ultimately potential therapeutic targets.
Abhineet M. Sharma, Robert Birkett, Erika T. Lin, Linda M. Ernst, William A. Grobman, Suchitra Swaminathan, Hiam Abdala-Valencia, Alexander V. Misharin, Elizabeth T. Bartom, Karen K. Mestan
Parturition is a well-orchestrated process characterized by increased uterine contractility, cervical ripening, and activation of the chorioamniotic membranes; yet, the transition from a quiescent to a contractile myometrium heralds the onset of labor. However, the cellular underpinnings of human parturition in the uterine tissues are still poorly understood. Herein, we performed a comprehensive study of the human myometrium during spontaneous term labor using single-cell RNA sequencing (scRNA-Seq). First, we established a single-cell atlas of the human myometrium and unraveled the cell type–specific transcriptomic activity modulated during labor. Major cell types included distinct subsets of smooth muscle cells, monocytes/macrophages, stromal cells, and endothelial cells, all of which communicated and participated in immune (e.g., inflammation) and nonimmune (e.g., contraction) processes associated with labor. Furthermore, integrating scRNA-Seq and microarray data with deconvolution of bulk gene expression highlighted the contribution of smooth muscle cells to labor-associated contractility and inflammatory processes. Last, myometrium-derived single-cell signatures can be quantified in the maternal whole-blood transcriptome throughout pregnancy and are enriched in women in labor, providing a potential means of noninvasively monitoring pregnancy and its complications. Together, our findings provide insights into the contributions of specific myometrial cell types to the biological processes that take place during term parturition.
Roger Pique-Regi, Roberto Romero, Valeria Garcia-Flores, Azam Peyvandipour, Adi L. Tarca, Errile Pusod, Jose Galaz, Derek Miller, Gaurav Bhatti, Robert Para, Tomi Kanninen, Ola Hadaya, Carmen Paredes, Kenichiro Motomura, Jeffrey R. Johnson, Eunjung Jung, Chaur-Dong Hsu, Stanley M. Berry, Nardhy Gomez-Lopez
Chronic inflammation and localized alterations in immune cell function are suspected to contribute to the progression of endometriosis and its associated symptoms. In particular, the alarmin, Interleukin (IL)-33 is elevated in the plasma, peritoneal fluid, and endometriotic lesions from endometriosis patients; however, the exact role of IL-33 in the pathophysiology of endometriosis is not well understood. In this study, we demonstrate, in both human patients and a murine model, that IL-33 contributes to the expansion of the novel group 2 innate lymphoid cells (ILC2s) and this IL-33 induced ILC2 expansion modulates the endometriosis lesion microenvironment. Importantly, we show that IL-33 drives hallmarks of severe endometriosis including elevated inflammation, lesion proliferation, and fibrosis and that this IL-33 induced aggravation is mediated by ILC2s. Finally, we demonstrate the functionality of IL-33 neutralization as a promising and novel therapeutic avenue for treating the debilitating symptoms of endometriosis.
Jessica E. Miller, Harshavardhan Lingegowda, Lindsey K. Symons, Olga Bougie, Steven L. Young, Bruce A. Lessey, Madhuri Koti, Chandrakant Tayade
Macrophages are commonly thought to contribute to the pathophysiology of preterm labor by amplifying inflammation — but a protective role has not previously been considered to our knowledge. We hypothesized that given their antiinflammatory capability in early pregnancy, macrophages exert essential roles in maintenance of late gestation and that insufficient macrophages may predispose individuals to spontaneous preterm labor and adverse neonatal outcomes. Here, we showed that women with spontaneous preterm birth had reduced CD209+CD206+ expression in alternatively activated CD45+CD14+ICAM3– macrophages and increased TNF expression in proinflammatory CD45+CD14+CD80+HLA-DR+ macrophages in the uterine decidua at the materno-fetal interface. In Cd11bDTR/DTR mice, depletion of maternal CD11b+ myeloid cells caused preterm birth, neonatal death, and postnatal growth impairment, accompanied by uterine cytokine and leukocyte changes indicative of a proinflammatory response, while adoptive transfer of WT macrophages prevented preterm birth and partially rescued neonatal loss. In a model of intra-amniotic inflammation–induced preterm birth, macrophages polarized in vitro to an M2 phenotype showed superior capacity over nonpolarized macrophages to reduce uterine and fetal inflammation, prevent preterm birth, and improve neonatal survival. We conclude that macrophages exert a critical homeostatic regulatory role in late gestation and are implicated as a determinant of susceptibility to spontaneous preterm birth and fetal inflammatory injury.
Nardhy Gomez-Lopez, Valeria Garcia-Flores, Peck Yin Chin, Holly M. Groome, Melanie T. Bijland, Kerrilyn R. Diener, Roberto Romero, Sarah A. Robertson
Retinoic Acid (RA) signaling has long been speculated to regulate embryo implantation, because many enzymes and proteins responsible for maintaining RA homeostasis and transducing RA signals are tightly regulated in the endometrium during this critical period. However, due to lack of genetic data, it was unclear whether RA signaling is truly required for implantation, and which specific RA signaling cascades are at play. Herein we utilize a genetic murine model that expresses a dominant negative form of RA receptor specifically in female reproductive organs to show that functional RA signaling is fundamental to female fertility, particularly implantation and decidualization. Reduction in RA signaling activity severely affects the ability of the uterus to achieve receptive status and decidualize, partially through dampening follistatin expression and downstream activin B/BMP2 signaling. To confirm translational relevance of these findings to humans, human endometrial stromal cells (hESCs) were treated with pan-RAR antagonist to show that in vitro decidualization is impaired. RNAi perturbation of individual RAR transcripts in hESCs revealed that RARα in particular is essential for proper decidualization. These data provide direct functional evidence that uterine RAR-mediated RA signaling is crucial for mammalian embryo implantation, and its disruption leads to failure of uterine receptivity and decidualization resulting in severely compromised fertility.
Yan Yin, Meade E. Haller, Sangappa B. Chadchan, Ramakrishna Kommagani, Liang Ma
The syndrome of spontaneous preterm birth (sPTB) presents a challenge to mechanistic understanding, effective risk stratification, and management. Individual associations between sPTB, ethnicity, vaginal microbiota, metabolome and innate immune response are known, but not fully understood and knowledge has yet to impact clinical practice. Here we use multi-data type integration and composite statistical models to gain insight into sPTB risk by exploring the cervicovaginal environment of an ethnically heterogenous pregnant population (n=346 women; n=60 sPTB <37 weeks’ gestation, including n=27 sPTB <34 weeks). Analysis of cervicovaginal samples (10-15+6 weeks) identified novel interactions between risk of sPTB and microbiota, metabolite, and maternal host defense molecules. Statistical modelling identified a composite of metabolites (leucine, tyrosine, aspartate, lactate, betaine, acetate and Ca2+) associated with risk of sPTB <37 weeks (Area Under the Curve - AUC 0.752). A combination of glucose, aspartate, Ca2+ and Lactobacillus crispatus and L. acidophilus relative abundance, identified risk of early sPTB <34 weeks, (AUC 0.758); improved by ethnicity stratification (AUC 0.835). Increased relative abundance of L. acidophilus appeared protective against sPTB <34 weeks. By using cervicovaginal fluid samples, we demonstrate the potential of multi-datatype integration for developing composite models towards understanding the contribution of the vaginal environment to risk of sPTB.
Flavia Flaviani, Natasha L. Hezelgrave, Tokuwa Kanno, Erica M. Prosdocimi, Evonne Chin-Smith, Alexandra E. Ridout, Djuna K. von Maydell, Vikash Mistry, William G. Wade, Andrew H. Shennan, Konstantina Dimitrakopoulou, Paul T. Seed, Andrew James Mason, Rachel M. Tribe
No posts were found with this tag.