Levodopa-induced dyskinesia (LID) is the most common, disruptive complication of Parkinson’s disease (PD) pharmacotherapy, yet despite decades of research, the changes in regional brain function underlying LID remain largely unknown. We previously found that the cerebral vasomotor and metabolic responses to levodopa are dissociated in PD subjects. Nonetheless, it is unclear whether levodopa-mediated dissociation is exaggerated in LID or distinguishes LID from non-LID subjects. To explore this possibility, we used dual-tracer positron emission tomography to quantify regional cerebral blood flow and metabolic activity in 28 PD subjects (14 LID, 14 non-LID), scanned before and during intravenous levodopa infusion. Levodopa-mediated dissociation was most prominent in the posterior putamen (
Vincent A. Jourdain, Chris C. Tang, Florian Holtbernd, Christian Dresel, Yoon Young Choi, Yilong Ma, Vijay Dhawan, David Eidelberg
Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4–/– mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4–/– mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design.
Giridhar Murlidharan, Andrew Crowther, Rebecca A. Reardon, Juan Song, Aravind Asokan
Microglia and monocytes play important roles in regulating brain remyelination. We developed DUOC-01, a cell therapy product intended for treatment of demyelinating diseases, from banked human umbilical cord blood (CB) mononuclear cells. Immunodepletion and selection studies demonstrated that DUOC-01 cells are derived from CB CD14+ monocytes. We compared the ability of freshly isolated CB CD14+ monocytes and DUOC-01 cells to accelerate remyelination of the brains of NOD/SCID/IL2Rγnull mice following cuprizone feeding–mediated demyelination. The corpus callosum of mice intracranially injected with DUOC-01 showed enhanced myelination, a higher proportion of fully myelinated axons, decreased gliosis and cellular infiltration, and more proliferating oligodendrocyte lineage cells than those of mice receiving excipient. Uncultured CB CD14+ monocytes also accelerated remyelination, but to a significantly lesser extent than DUOC-01 cells. Microarray analysis, quantitative PCR studies, Western blotting, and flow cytometry demonstrated that expression of factors that promote remyelination including PDGF-AA, stem cell factor, IGF1, MMP9, MMP12, and triggering receptor expressed on myeloid cells 2 were upregulated in DUOC-01 compared to CB CD14+ monocytes. Collectively, our results show that DUOC-01 accelerates brain remyelination by multiple mechanisms and could be beneficial in treating demyelinating conditions.
Arjun Saha, Susan Buntz, Paula Scotland, Li Xu, Pamela Noeldner, Sachit Patel, Amy Wollish, Aruni Gunaratne, Tracy Gentry, Jesse Troy, Glenn K. Matsushima, Joanne Kurtzberg, Andrew E. Balber
Within the CNS, a dysregulated hemostatic response contributes to both hemorrhagic and ischemic strokes. Tissue factor (TF), the primary initiator of the extrinsic coagulation cascade, plays an essential role in hemostasis and also contributes to thrombosis. Using both genetic and pharmacologic approaches, we characterized the contribution of neuroectodermal (NE) cell TF to the pathophysiology of stroke. We used mice with various levels of TF expression and found that astrocyte TF activity reduced to ~5% of WT levels was still sufficient to maintain hemostasis after hemorrhagic stroke but was also low enough to attenuate inflammation, reduce damage to the blood-brain barrier, and improve outcomes following ischemic stroke. Pharmacologic inhibition of TF during the reperfusion phase of ischemic stroke attenuated neuronal damage, improved behavioral deficit, and prevented mortality of mice. Our data demonstrate that NE cell TF limits bleeding complications associated with the transition from ischemic to hemorrhagic stroke and also contributes to the reperfusion injury after ischemic stroke. The high level of TF expression in the CNS is likely the result of selective pressure to limit intracerebral hemorrhage (ICH) after traumatic brain injury but, in the modern era, poses the additional risk of increased ischemia-reperfusion injury after ischemic stroke.
Shaobin Wang, Brandi Reeves, Erica M. Sparkenbaugh, Janice Russell, Zbigniew Soltys, Hua Zhang, James E. Faber, Nigel S. Key, Daniel Kirchhofer, D. Neil Granger, Nigel Mackman, Rafal Pawlinski
The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell–derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9–UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA.
Rachael A. Powis, Evangelia Karyka, Penelope Boyd, Julien Côme, Ross A. Jones, Yinan Zheng, Eva Szunyogova, Ewout J.N. Groen, Gillian Hunter, Derek Thomson, Thomas M. Wishart, Catherina G. Becker, Simon H. Parson, Cécile Martinat, Mimoun Azzouz, Thomas H. Gillingwater
Cardiovascular progenitor cells (CPCs) expressing the ISL1-LIM–homeodomain transcription factor contribute developmentally to cardiomyocytes in all 4 chambers of the heart. Here, we show that ISL1-CPCs can be applied to myocardial regeneration following injury. We used a rapid 3D methylcellulose approach to form murine and human ISL1-CPC spheroids that engrafted after myocardial infarction in murine hearts, where they differentiated into cardiomyocytes and endothelial cells, integrating into the myocardium and forming new blood vessels. ISL1-CPC spheroid–treated mice exhibited reduced infarct area and increased blood vessel formation compared with control animals. Moreover, left ventricular (LV) contractile function was significantly better in mice transplanted with ISL1-CPCs 4 weeks after injury than that in control animals. These results provide proof-of-concept of a cardiac repair strategy employing ISL1-CPCs that, based on our previous lineage-tracing studies, are committed to forming heart tissue, in combination with a robust methylcellulose spheroid–based delivery approach.
Oscar Bartulos, Zhen Wu Zhuang, Yan Huang, Nicole Mikush, Carol Suh, Alda Bregasi, Lin Wang, William Chang, Diane S. Krause, Lawrence H. Young, Jordan S. Pober, Yibing Qyang
Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-
Sandra Motas, Virginia Haurigot, Miguel Garcia, Sara Marcó, Albert Ribera, Carles Roca, Xavier Sánchez, Víctor Sánchez, Maria Molas, Joan Bertolin, Luca Maggioni, Xavier León, Jesús Ruberte, Fatima Bosch
The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders.
Daniel A. Wolf, Jacob Y. Hesterman, Jenna M. Sullivan, Kelly D. Orcutt, Matthew D. Silva, Merryl Lobo, Tyler Wellman, Jack Hoppin, Ajay Verma
No posts were found with this tag.