Many extremely preterm infants (born before 28 gestational weeks [GWs]) develop cognitive impairment in later life, although the underlying pathogenesis is not yet completely understood. Our examinations of the developing human neocortex confirmed that neuronal migration continues beyond 23 GWs, the gestational week at which extremely preterm infants have live births. We observed larger numbers of ectopic neurons in the white matter of the neocortex in human extremely preterm infants with brain injury and hypothesized that altered neuronal migration may be associated with cognitive impairment in later life. To confirm whether preterm brain injury affects neuronal migration, we produced brain damage in mouse embryos by occluding the maternal uterine arteries. The mice showed delayed neuronal migration, ectopic neurons in the white matter, altered neuronal alignment, and abnormal corticocortical axonal wiring. Similar to human extremely preterm infants with brain injury, the surviving mice exhibited cognitive deficits. Activation of the affected medial prefrontal cortices of the surviving mice improved working memory deficits, indicating that decreased neuronal activity caused the cognitive deficits. These findings suggest that altered neuronal migration altered by brain injury might contribute to the subsequent development of cognitive impairment in extremely preterm infants.
Ken-ichiro Kubo, Kimiko Deguchi, Taku Nagai, Yukiko Ito, Keitaro Yoshida, Toshihiro Endo, Seico Benner, Wei Shan, Ayako Kitazawa, Michihiko Aramaki, Kazuhiro Ishii, Minkyung Shin, Yuki Matsunaga, Kanehiro Hayashi, Masaki Kakeyama, Chiharu Tohyama, Kenji F. Tanaka, Kohichi Tanaka, Sachio Takashima, Masahiro Nakayama, Masayuki Itoh, Yukio Hirata, Barbara Antalffy, Dawna D. Armstrong, Kiyofumi Yamada, Ken Inoue, Kazunori Nakajima
Motor dysfunction is a prominent and disabling feature of Huntington’s disease (HD), but the molecular mechanisms that dictate its onset and progression are unknown. The N-methyl-D-aspartate receptor 2A (NR2A) subunit regulates motor skill development and synaptic plasticity in medium spiny neurons (MSNs) of the striatum, cells that are most severely impacted by HD. Here, we document reduced NR2A receptor subunits on the dendritic membranes and at the synapses of MSNs in zQ175 mice that model HD. We identify that SorCS2, a vacuolar protein sorting 10 protein–domain (VPS10P-domain) receptor, interacts with VPS35, a core component of retromer, thereby regulating surface trafficking of NR2A in MSNs. In the zQ175 striatum, SorCS2 is markedly decreased in an age- and allele-dependent manner. Notably, SorCS2 selectively interacts with mutant huntingtin (mtHTT), but not WT huntingtin (wtHTT), and is mislocalized to perinuclear clusters in striatal neurons of human HD patients and zQ175 mice. Genetic deficiency of SorCS2 accelerates the onset and exacerbates the motor coordination deficit of zQ175 mice. Together, our results identify SorCS2 as an interacting protein of mtHTT and demonstrate that impaired SorCS2-mediated NR2A subunit trafficking to dendritic surface of MSNs is, to our knowledge, a novel mechanism contributing to motor coordination deficits of HD.
Qian Ma, Jianmin Yang, Teresa A. Milner, Jean-Paul G. Vonsattel, Mary Ellen Palko, Lino Tessarollo, Barbara L. Hempstead
Nonalcoholic fatty liver disease (NAFLD), characterized by an excess accumulation of hepatic triglycerides, is a growing health epidemic. While ER stress in the liver has been implicated in the development of NAFLD, the role of brain ER stress — which is emerging as a key contributor to a number of chronic diseases including obesity — in NAFLD remains unclear. These studies reveal that chemical induction of ER stress in the brain caused hepatomegaly and hepatic steatosis in mice. Conversely, pharmacological reductions in brain ER stress in diet-induced obese mice rescued NAFLD independent of body weight, food intake, and adiposity. Evaluation of brain regions involved revealed robust activation of ER stress biomarkers and ER ultrastructural abnormalities in the circumventricular subfornical organ (SFO), a nucleus situated outside of the blood-brain-barrier, in response to high-fat diet. Targeted reductions in SFO-ER stress in obese mice via SFO-specific supplementation of the ER chaperone 78-kDa glucose–regulated protein ameliorated hepatomegaly and hepatic steatosis without altering body weight, food intake, adiposity, or obesity-induced hypertension. Overall, these findings indicate a novel role for brain ER stress, notably within the SFO, in the pathogenesis of NAFLD.
Julie A. Horwath, Chansol Hurr, Scott D. Butler, Mallikarjun Guruju, Martin D. Cassell, Allyn L. Mark, Robin L. Davisson, Colin N. Young
We lack a mechanistic explanation for the stereotyped pattern of white matter loss seen in Huntington’s disease (HD). While the earliest white matter changes are seen around the striatum, within the corpus callosum, and in the posterior white matter tracts, the order in which these changes occur and why these white matter connections are specifically vulnerable is unclear. Here, we use diffusion tractography in a longitudinal cohort of individuals yet to develop clinical symptoms of HD to identify a hierarchy of vulnerability, where the topological length of white matter connections between a brain area and its neighbors predicts the rate of atrophy over 24 months. This demonstrates a new principle underlying neurodegeneration in HD, whereby brain connections with the greatest topological length are the first to suffer damage that can account for the stereotyped pattern of white matter loss observed in premanifest HD.
Peter McColgan, Kiran K. Seunarine, Sarah Gregory, Adeel Razi, Marina Papoutsi, Jeffrey D. Long, James A. Mills, Eileanoir Johnson, Alexandra Durr, Raymund A.C. Roos, Blair R. Leavitt, Julie C. Stout, Rachael I. Scahill, Chris A. Clark, Geraint Rees, Sarah J. Tabrizi, the Track-On HD Investigators
Shadab A. Rahman, Melissa A. St. Hilaire, Anne-Marie Chang, Nayantara Santhi, Jeanne F. Duffy, Richard E. Kronauer, Charles A. Czeisler, Steven W. Lockley, Elizabeth B. Klerman
Martin Niethammer, Chris C. Tang, Peter A. LeWitt, Ali R. Rezai, Maureen A. Leehey, Steven G. Ojemann, Alice W. Flaherty, Emad N. Eskandar, Sandra K. Kostyk, Atom Sarkar, Mustafa S. Siddiqui, Stephen B. Tatter, Jason M. Schwalb, Kathleen L. Poston, Jaimie M. Henderson, Roger M. Kurlan, Irene H. Richard, Christine V. Sapan, David Eidelberg, Matthew J. During, Michael G. Kaplitt, Andrew Feigin
Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of
Qian Li, Xiaoning Han, Xi Lan, Yufeng Gao, Jieru Wan, Frederick Durham, Tian Cheng, Jie Yang, Zhongyu Wang, Chao Jiang, Mingyao Ying, Raymond C. Koehler, Brent R. Stockwell, Jian Wang
Surgery can induce cognitive decline, a risk that increases with advancing age. In rodents, postoperative cognitive decline (POCD) is associated with the inflammatory activation of hippocampal microglia. To examine the role of microglia in POCD, we inhibited the colony-stimulating factor 1 receptor (CSF1R) in adult mice, effectively depleting CNS microglia. Surgical trauma (tibial fracture) reduced the ability of mice to remember a conditioned response learned preoperatively, a deficit more pronounced and persistent in mice with diet-induced obesity (DIO). Whereas microglial depletion by itself did not affect learning or memory, perioperative microglial depletion remarkably protected mice, including those with DIO, from POCD. This protection was associated with reduced hippocampal levels of inflammatory mediators, abrogation of hippocampal recruitment of CCR2+ leukocytes, and higher levels of circulating inflammation-resolving factors. Targeting microglia may thus be a viable strategy to mitigate the development of POCD, particularly in those with increased vulnerability.
Xiaomei Feng, Martin Valdearcos, Yosuke Uchida, David Lutrin, Mervyn Maze, Suneil K. Koliwad
Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA– or HDAC4 siRNA–induced cognitive impairments were ameliorated by intranasal IGF2 administration. In
Marta Pardo, Yuyan Cheng, Dmitry Velmeshev, Marco Magistri, Hagit Eldar-Finkelman, Ana Martinez, Mohammad A. Faghihi, Richard S. Jope, Eleonore Beurel
Spinal muscular atrophy (SMA) is a leading genetic cause of infantile death and is caused by the loss of survival motor neuron-1 (
Kevin A. Kaifer, Eric Villalón, Erkan Y. Osman, Jacqueline J. Glascock, Laura L. Arnold, D.D.W. Cornelison, Christian L. Lorson
No posts were found with this tag.