Plasma calcium (Ca2+) is maintained by amending the release of parathyroid hormone and through direct effects of the Ca2+ sensing receptor (CaSR) in the renal tubule. Combined, these mechanisms alter intestinal Ca2+ absorption by modulating 1,25-dihydroxy vitamin D3 production, bone resorption, and renal Ca2+ excretion. The CaSR is a therapeutic target in the treatment of secondary hyperparathyroidism and hypocalcemia a common complication of calcimimetic therapy. The CaSR is also expressed in intestinal epithelium, however, a direct role in regulating local intestinal Ca2+ absorption is unknown. Chronic CaSR activation decreased expression of genes involved in Ca2+ absorption. In Ussing chambers, increasing extracellular Ca2+ or basolateral application of the calcimimetic cinacalcet decreased net Ca2+ absorption across intestinal preparations acutely. Conversely, Ca2+ absorption increased with decreasing extracellular Ca2+ concentration. These responses were absent in mice expressing a non-functional TRPV6, TRPV6D541A. Cinacalcet also attenuated Ca2+ fluxes through TRPV6 in Xenopus oocytes when co-expressed with the CaSR. Moreover, the phospholipase C inhibitor, U73122, prevented cinacalcet-mediated inhibition of Ca2+ flux. These results reveal a regulatory pathway whereby activation of the CaSR in the basolateral membrane of the intestine directly attenuates local Ca2+ absorption via TRPV6 to prevent hypercalcemia and help explain how calcimimetics induce hypocalcemia.
Justin J. Lee, Xiong Liu, Debbie O'Neil, Megan R. Beggs, Petra Weissgerber, Veit Flockerzi, Xing-Zhen Chen, Henrik Dimke, R. Todd Alexander
Chronic tubulointerstitial injury impacts the prognosis of focal segmental glomerulosclerosis (FSGS). We found that the level of versican V1 was increased in tubular cells of FSGS patients. Tubular cell–derived versican V1 induced proliferation and collagen synthesis by activating the CD44/Smad3 pathway in fibroblasts. Both urine C3a and suPAR were increased and bound to the tubular cells in FSGS patients. C3a promoted the transcription of versican by activating the AKT/β-catenin pathway. C3aR knockout decreased the expression of versican in Adriamycin-treated (ADR-treated) mice. On the other hand, suPAR bound to integrin β6 and activated Rac1, which bound to SRp40 at the 5′ end of exon 7 in versican pre-mRNA. This binding inhibited the 3′-end splicing of intron 6 and the base-pair interactions between intron 6 and intron 8, leading to the formation of versican V1. Cotreatment with ADR and suPAR specifically increased the level of versican V1 in tubulointerstitial tissues and caused more obvious interstitial fibrosis in mice than treatment with only ADR. Altogether, our results show that C3a and suPAR drive versican V1 expression in tubular cells by promoting transcription and splicing, respectively, and the increases in tubular cell–derived versican V1 induce interstitial fibrosis by activating fibroblasts in FSGS.
Runhong Han, Shuai Hu, Weisong Qin, Jinsong Shi, Qin Hou, Xia Wang, Xiaodong Xu, Minchao Zhang, Caihong Zeng, Zhihong Liu, Hao Bao
The antidiuretic hormone vasopressin (AVP), acting through its type 2 receptor (V2R) in the collecting duct (CD), critically controls urine concentrating capability. Here, we report that site-1 protease–derived (S1P-derived) soluble (pro)renin receptor (sPRR) participates in regulation of fluid homeostasis via targeting V2R. In cultured inner medullary collecting duct (IMCD) cells, AVP-induced V2R expression was blunted by a PRR antagonist, PRO20; a PRR-neutralizing antibody; or a S1P inhibitor, PF-429242. In parallel, sPRR release was increased by AVP and reduced by PF-429242. Administration of histidine-tagged sPRR, sPRR-His, stimulated V2R expression and also reversed the inhibitory effect of PF-429242 on the expression induced by AVP. PF-429242 treatment in C57/BL6 mice impaired urine concentrating capability, which was rescued by sPRR-His. This observation was recapitulated in mice with renal tubule–specific deletion of S1P. During the pharmacological or genetic manipulation of S1P alone or in combination with sPRR-His, the changes in urine concentration were paralleled with renal expression of V2R and aquaporin-2 (AQP2). Together, these results support that S1P-derived sPRR exerts a key role in determining renal V2R expression and, thus, urine concentrating capability.
Fei Wang, Chuanming Xu, Renfei Luo, Kexin Peng, Nirupama Ramkumar, Shiying Xie, Xiaohan Lu, Long Zhao, Chang-Jiang Zuo, Donald E. Kohan, Tianxin Yang
High autophagic activity in podocytes, terminally differentiated cells which serve as main components of the kidney filtration barrier, is essential for podocyte survival under various challenges. How podocytes maintain such a high level of autophagy, however, remains unclear. Here we report that signal regulatory protein α (SIRPα) plays a key role in promoting podocyte autophagy. Unlike other glomerular cells, podocytes strongly express SIRPα, which is, however, downregulated in patients with focal segmental glomerulosclerosis and mice with experimental nephropathy. Podocyte SIRPα levels are inversely correlated with the severity of podocyte injury and proteinuria but positively with autophagy. Compared to wild-type littermates, Sirpa-deficient mice display greater age-related podocyte injury and proteinuria and develop more rapid and severe renal injury in various models of experimental nephropathy. Mechanistically, podocyte SIRPα strongly reduces Akt/GSK-3β/β-catenin signaling, leading to an increase in autophagic activity. Our findings thus demonstrate a critical protective role of SIRPα in podocyte survival via maintaining autophagic activity.
Limin Li, Ying Liu, Shan Li, Yong Yang, Caihong Zeng, Weiwei Rong, Hongwei Liang, Mingchao Zhang, Xiaodong Zhu, Koby Kidder, Yuan Liu, Zhihong Liu, Ke Zen
Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is striking that proliferator gamma coactivator 1-alpha (PGC1α), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here we report that PGC1α’s induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1α knockout tubular cells were sensitized to the genotoxic stressor cisplatin whereas transgenic cells were protected. The biosensor mtKeima unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1α not only counteracted this effect but also raised basal mitophagy, as did the downstream mediator nicotinamide adenine dinucleotide (NAD+). PGC1α did not consistently affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1α in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1α’s exquisite reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a novel target for renal tubular stress resistance.
Matthew R. Lynch, Mei T. Tran, Kenneth M. Ralto, Zsuzsanna K. Zsengeller, Vinod Raman, Swati S. Bhasin, Nuo Sun, Xiuying Chen, Daniel Brown, Ilsa I. Rovira, Kensei Taguchi, Craig R. Brooks, Isaac E. Stillman, Manoj K. Bhasin, Toren Finkel, Samir M. Parikh
Acute cardiorenal syndrome (CRS-1) is a morbid complication of acute cardiovascular disease. Heart-to-kidney signals transmitted by “cardiorenal connectors” have been postulated, but investigation into CRS-1 has been limited by technical limitations and a paucity of models. To address these limitations, we developed a translational model of CRS-1, cardiac arrest and cardiopulmonary resuscitation (CA/CPR), and now report findings from nanoscale mass spectrometry proteomic exploration of glomerular filtrate 2 hours after CA/CPR or sham procedure. Filtrate acquisition was confirmed by imaging, molecular weight and charge distribution, and exclusion of protein specific to surrounding cells. Filtration of proteins specific to the heart was detected following CA/CPR and confirmed with mass spectrometry performed using urine collections from mice with deficient tubular endocytosis. Cardiac LIM protein was a CA/CPR-specific filtrate component. Cardiac arrest induced plasma release of cardiac LIM protein in mice and critically ill human cardiac arrest survivors, and administration of recombinant cardiac LIM protein to mice altered renal function. These findings demonstrate that glomerular filtrate is accessible to nanoscale proteomics and elucidate the population of proteins filtered 2 hours after CA/CPR. The identification of cardiac-specific proteins in renal filtrate suggests a novel signaling mechanism in CRS-1. We expect these findings to advance understanding of CRS-1.
Rumie Wakasaki, Katsuyuki Matsushita, Kirsti Golgotiu, Sharon Anderson, Mahaba B. Eiwaz, Daniel J. Orton, Sang Jun Han, H. Thomas Lee, Richard D. Smith, Karin D. Rodland, Paul D. Piehowski, Michael P. Hutchens
Acute kidney injury (AKI) is a common clinical condition of growing incidence. Patients who suffer severe AKI have a higher risk of developing interstitial fibrosis, chronic kidney disease, and end-stage renal disease later in life. Cellular senescence is a persistent cell cycle arrest and altered gene expression pattern evoked by multiple stressors. The number of senescent cells increases with age and even in small numbers these cells can induce chronic inflammation and fibrosis; indeed, in multiple organs including kidneys, the accumulation of such cells is a hallmark of aging. We hypothesized that cellular senescence might be induced in the kidney after injury and that this might contribute to progressive organ fibrosis. Testing this hypothesis, we found that tubular epithelial cells (TECs) in mice senesce within a few days of kidney injury and that this response is mediated by epithelial Toll-like and interleukin 1 receptors (TLR/IL-1R) of the innate immune system. Epithelial cell–specific inhibition of innate immune signaling in mice by knockout of myeloid differentiation 88 (Myd88) reduced fibrosis as well as damage to kidney tubules, and also prevented the accumulation of senescent TECs. Importantly, although inactivation of Myd88 after injury ameliorated fibrosis, it did not reduce damage to the tubules. Selectively induced apoptosis of senescent cells by two different approaches only partially reduced kidney fibrosis, without ameliorating damage to the tubules. Our data reveal a cell-autonomous role for epithelial innate immunity in controlling TEC senescence after kidney injury, and additionally suggest that early therapeutic intervention is required for effective reduction of long-term sequelae of AKI.
Heng Jin, Yan Zhang, Qiong Ding, Shan Shan Wang, Prerna Rastogi, Dao-Fu Dai, Dongmei Lu, Madison Purvis, Chao Cao, Angela Wang, Dingxiao Liu, Chongyu Ren, Sarah Elhadi, Ming-Chang Hu, Yanfen Chai, Diana Zepeda-Orozco, Judith Campisi, Massimo Attanasio
Acute kidney injury (AKI) is a devastating clinical condition affecting at least two-thirds of critically ill patients, and, among these patients, it is associated with a greater than 60% risk of mortality. Kidney mononuclear phagocytes (MPs) are implicated in pathogenesis and healing in mouse models of AKI and, thus, have been the subject of investigation as potential targets for clinical intervention. We have determined that, after injury, F4/80hi-expressing kidney-resident macrophages (KRMs) are a distinct cellular subpopulation that does not differentiate from nonresident infiltrating MPs. However, if KRMs are depleted using polyinosinic/polycytidylic acid (poly I:C), they can be reconstituted from bone marrow–derived precursors. Further, KRMs lack major histocompatibility complex class II (MHCII) expression before P7 but upregulate it over the next 14 days. This MHCII– KRM phenotype reappears after injury. RNA sequencing shows that injury causes transcriptional reprogramming of KRMs such that they more closely resemble that found at P7. KRMs after injury are also enriched in Wingless-type MMTV integration site family (Wnt) signaling, indicating that a pathway vital for mouse and human kidney development is active. These data indicate that mechanisms involved in kidney development may be functioning after injury in KRMs.
Jeremie M. Lever, Travis D. Hull, Ravindra Boddu, Mark E. Pepin, Laurence M. Black, Oreoluwa O. Adedoyin, Zhengqin Yang, Amie M. Traylor, Yanlin Jiang, Zhang Li, Jacelyn E. Peabody, Hannah E. Eckenrode, David K. Crossman, Michael R. Crowley, Subhashini Bolisetty, Kurt A. Zimmerman, Adam R. Wende, Michal Mrug, Bradley K. Yoder, Anupam Agarwal, James F. George
Podocyte injury is central to many forms of kidney disease, but transcriptional signatures reflecting podocyte injury and compensation mechanisms are challenging to analyze in vivo. Human kidney organoids derived from pluripotent stem cells (PSCs), a potentially new model for disease and regeneration, present an opportunity to explore the transcriptional plasticity of podocytes. Here, transcriptional profiling of more than 12,000 single cells from human PSC–derived kidney organoid cultures was used to identify robust and reproducible cell lineage gene expression signatures shared with developing human kidneys based on trajectory analysis. Surprisingly, the gene expression signature characteristic of developing glomerular epithelial cells was also observed in glomerular tissue from a kidney disease cohort. This signature correlated with proteinuria and inverse eGFR, and it was confirmed in an independent podocytopathy cohort. Three genes in particular were further characterized as potentially novel components of the glomerular disease signature. We conclude that cells in human PSC–derived kidney organoids reliably recapitulate the developmental transcriptional program of podocytes and other cell lineages in the human kidney and that transcriptional profiles seen in developing podocytes are reactivated in glomerular disease. Our findings demonstrate an approach to identifying potentially novel molecular programs involved in the pathogenesis of glomerulopathies.
Jennifer L. Harder, Rajasree Menon, Edgar A. Otto, Jian Zhou, Sean Eddy, Noel L. Wys, Christopher O’Connor, Jinghui Luo, Viji Nair, Cristina Cebrian, Jason R. Spence, Markus Bitzer, Olga G. Troyanskaya, Jeffrey B. Hodgin, Roger C. Wiggins, Benjamin S. Freedman, Matthias Kretzler, European Renal cDNA Bank (ERCB), Nephrotic Syndrome Study Network (NEPTUNE)
Drug-induced kidney injury, largely caused by proximal tubular intoxicants, limits development and clinical use of new and approved drugs. Assessing preclinical nephrotoxicity relies on animal models that are frequently insensitive; thus, potentially novel techniques — including human microphysiological systems, or “organs on chips” — are proposed to accelerate drug development and predict safety. Polymyxins are potent antibiotics against multidrug-resistant microorganisms; however, clinical use remains restricted because of high risk of nephrotoxicity and limited understanding of toxicological mechanisms. To mitigate risks, structural analogs of polymyxins (NAB739 and NAB741) are currently in clinical development. Using a microphysiological system to model human kidney proximal tubule, we exposed cells to polymyxin B (PMB) and observed significant increases of injury signals, including kidney injury molecule-1 KIM-1and a panel of injury-associated miRNAs (each P < 0.001). Surprisingly, transcriptional profiling identified cholesterol biosynthesis as the primary cellular pathway induced by PMB (P = 1.22 ×10–16), and effluent cholesterol concentrations were significantly increased after exposure (P < 0.01). Additionally, we observed no upregulation of the nuclear factor (erythroid derived-2)–like 2 pathway, despite this being a common pathway upregulated in response to proximal tubule toxicants. In contrast with PMB exposure, minimal changes in gene expression, injury biomarkers, and cholesterol concentrations were observed in response to NAB739 and NAB741. Our findings demonstrate the preclinical safety of NAB739 and NAB741 and reveal cholesterol biosynthesis as a potentially novel pathway for PMB-induced injury. To our knowledge, this is the first demonstration of a human-on-chip platform used for simultaneous safety testing of new chemical entities and defining unique toxicological pathway responses of an FDA-approved molecule.
Elijah J. Weber, Kevin A. Lidberg, Lu Wang, Theo K. Bammler, James W. MacDonald, Mavis J. Li, Michelle Redhair, William M. Atkins, Cecilia Tran, Kelly M. Hines, Josi Herron, Libin Xu, Maria Beatriz Monteiro, Susanne Ramm, Vishal Vaidya, Martti Vaara, Timo Vaara, Jonathan Himmelfarb, Edward J. Kelly
No posts were found with this tag.