Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Metabolism

  • 478 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 31
  • 32
  • 33
  • …
  • 47
  • 48
  • Next →
Structure–function relationships of HDL in diabetes and coronary heart disease
Mathias Cardner, Mustafa Yalcinkaya, Sandra Goetze, Edlira Luca, Miroslav Balaz, Monika Hunjadi, Johannes Hartung, Andrej Shemet, Nicolle Kraenkel, Silvija Radosavljevic, Michaela Keel, Alaa Othman, Gergely Karsai, Thorsten Hornemann, Manfred Claassen, Gerhard Liebisch, Erick Carreira, Andreas Ritsch, Ulf Landmesser, Jan Krützfeldt, Christian Wolfrum, Bernd Wollscheid, Niko Beerenwinkel, Lucia Rohrer, Arnold von Eckardstein
Mathias Cardner, Mustafa Yalcinkaya, Sandra Goetze, Edlira Luca, Miroslav Balaz, Monika Hunjadi, Johannes Hartung, Andrej Shemet, Nicolle Kraenkel, Silvija Radosavljevic, Michaela Keel, Alaa Othman, Gergely Karsai, Thorsten Hornemann, Manfred Claassen, Gerhard Liebisch, Erick Carreira, Andreas Ritsch, Ulf Landmesser, Jan Krützfeldt, Christian Wolfrum, Bernd Wollscheid, Niko Beerenwinkel, Lucia Rohrer, Arnold von Eckardstein
View: Text | PDF

Structure–function relationships of HDL in diabetes and coronary heart disease

  • Text
  • PDF
Abstract

High-density lipoproteins (HDL) contain hundreds of lipid species and proteins and exert many potentially vasoprotective and anti-diabetogenic activities on cells. To resolve structure-function-disease relationships of HDL we characterized HDL of 51 healthy subjects and 98 patients with diabetes (T2DM), coronary heart disease (CHD), or both for protein and lipid composition as well as functionality in five cell types. The integration of 40 clinical characteristics, 34 NMR features, 182 proteins, 227 lipid species, and 12 functional read-outs by high-dimensional statistical modelling revealed first that CHD and T2DM are associated with different changes of HDL in size distribution, protein and lipid composition as well as function. Second, different cellular functions of HDL are weakly correlated with each other and determined by different structural components. Cholesterol efflux capacity was no proxy of other functions. Third, three novel determinants of HDL function were identified and validated by the use of artificially reconstituted HDL, namely the sphingadienine-based sphingomyelin SM 42:3 and glycosylphosphatidylinositol-phospholipase D1 for the ability of HDL to inhibit starvation induced apoptosis of human aortic endothelial cells and apolipoprotein F for the ability of HDL to promote maximal respiration of brown adipocytes.

Authors

Mathias Cardner, Mustafa Yalcinkaya, Sandra Goetze, Edlira Luca, Miroslav Balaz, Monika Hunjadi, Johannes Hartung, Andrej Shemet, Nicolle Kraenkel, Silvija Radosavljevic, Michaela Keel, Alaa Othman, Gergely Karsai, Thorsten Hornemann, Manfred Claassen, Gerhard Liebisch, Erick Carreira, Andreas Ritsch, Ulf Landmesser, Jan Krützfeldt, Christian Wolfrum, Bernd Wollscheid, Niko Beerenwinkel, Lucia Rohrer, Arnold von Eckardstein

×

Pharmacologic and genetic approaches define human pancreatic beta cell mitogenic targets of DYRK1A inhibitors
Courtney Ackeifi, Ethan Swartz, Kunal Kumar, Hongtao Liu, Suebsuwong Chalada, Esra Karakose, Donald K. Scott, Adolfo Garcia-Ocaña, Roberto Sanchez, Robert J. DeVita, Andrew F. Stewart, Peng Wang
Courtney Ackeifi, Ethan Swartz, Kunal Kumar, Hongtao Liu, Suebsuwong Chalada, Esra Karakose, Donald K. Scott, Adolfo Garcia-Ocaña, Roberto Sanchez, Robert J. DeVita, Andrew F. Stewart, Peng Wang
View: Text | PDF

Pharmacologic and genetic approaches define human pancreatic beta cell mitogenic targets of DYRK1A inhibitors

  • Text
  • PDF
Abstract

Small molecule inhibitors of Dual Specificity, Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A), including harmine and others, are able to drive human beta cell regeneration. While DYRK1A is certainly a target of this class, whether it is the only, or the most important target, is uncertain. Here, we employ a combined pharmacologic and genetic approach to refine the potential mitogenic targets of the DYRK1A inhibitor family in human islets. A combination of human beta cell RNAseq, DYRK1A inhibitor kinome screens, pharmacologic inhibitors, and targeted silencing of candidate genes confirms that DYRK1A is a central target. Surprisingly, however, DYRK1B also proves to be an important target: silencing DYRK1A results in an increase in DYRK1B; simultaneous silencing of both DYRK1A and DYRK1B yields greater beta cell proliferation than silencing either individually. Importantly, other potential kinases, such as the CLK and the GSK3 families, are excluded as important harmine targets. Finally, we describe adenoviruses that are able to silence up to seven targets simultaneously. Collectively, we report that inhibition of both DYRK1A and DYRK1B is required for induction of maximal rates of human beta cell proliferation, and provide clarity for future efforts at structure-based drug design for human beta cell regenerative drugs.

Authors

Courtney Ackeifi, Ethan Swartz, Kunal Kumar, Hongtao Liu, Suebsuwong Chalada, Esra Karakose, Donald K. Scott, Adolfo Garcia-Ocaña, Roberto Sanchez, Robert J. DeVita, Andrew F. Stewart, Peng Wang

×

Vitamin E sequestration by liver fat in humans
Pierre-Christian Violet, Ifechukwude C. Ebenuwa, Yu Wang, Mahtab Niyyati, Sebastian J. Padayatty, Brian Head, Kenneth Wilkins, Stacey Chung, Varsha Thakur, Lynn Ulatowski, Jeffrey Atkinson, Mikel Ghelfi, Sheila Smith, Hongbin Tu, Gerd Bobe, Chia-Ying Liu, David W. Herion, Robert D. Shamburek, Danny Manor, Maret G. Traber, Mark Levine
Pierre-Christian Violet, Ifechukwude C. Ebenuwa, Yu Wang, Mahtab Niyyati, Sebastian J. Padayatty, Brian Head, Kenneth Wilkins, Stacey Chung, Varsha Thakur, Lynn Ulatowski, Jeffrey Atkinson, Mikel Ghelfi, Sheila Smith, Hongbin Tu, Gerd Bobe, Chia-Ying Liu, David W. Herion, Robert D. Shamburek, Danny Manor, Maret G. Traber, Mark Levine
View: Text | PDF

Vitamin E sequestration by liver fat in humans

  • Text
  • PDF
Abstract

BACKGROUND We hypothesized that obesity-associated hepato-steatosis served as a pathophysiologic chemical depot for fat-soluble vitamins and altered normal physiology. Using α-tocopherol (vitamin E) as a model vitamin, pharmacokinetics and kinetics principles were utilized to determine whether excess liver fat sequestered α-tocopherol in women with obesity-associated hepato-steatosis vs healthy controls. METHODS Custom-synthesized deuterated α-tocopherols (d3- and d6-α-tocopherols) were administered to hospitalized healthy women and women with hepato-steatosis under IND guidelines. Serial samples obtained over 72 hours were analyzed by LC/MS. Fluorescent-labelled α-tocopherol was custom-synthesized for cell studies. RESULTS In healthy subjects, 85% of intravenous d6-α-tocopherol disappeared from the circulation within 20 minutes but reappeared within minutes and peaked at 6-8 hours. d3- and d6-α-Tocopherols localized to lipoproteins. Lipoprotein redistribution occurred only in vivo within 1h, indicating a key role of liver in rapid uptake and re-release into the circulation. Compared to healthy subjects, subjects with hepato-steatosis had similar d6-α-tocopherol entry rates into liver, but reduced initial release rates (p<0.001). Similarly, pharmacokinetics parameters of AUC and Maximum Concentration (Cmax) were reduced (AUC0-8 ,p<0.01;Cmax p<0.02) in hepato-steatosis subjects, indicating reduced hepatic d6-α-tocopherol output. Reduced kinetics and pharmacokinetics parameters (AUC and Cmax) in hepato-steatosis subjects who received 2 mg were mirrored by similar reductions in healthy subjects when comparing 5 and 2 mg doses. In vitro, fluorescent-labelled α-tocopherol localized specifically to lipid in fat-loaded hepatocytes, indicating sequestration. CONCLUSIONS The unique role of the liver in vitamin E physiology is dysregulated by excess liver fat. Obesity-associated hepato-steatosis may produce unrecognized hepatic vitamin E sequestration, which might subsequently drive liver disease. Our findings raise the possibility that hepato-steatosis may similarly alter hepatic physiology of other fat-soluble vitamins.

Authors

Pierre-Christian Violet, Ifechukwude C. Ebenuwa, Yu Wang, Mahtab Niyyati, Sebastian J. Padayatty, Brian Head, Kenneth Wilkins, Stacey Chung, Varsha Thakur, Lynn Ulatowski, Jeffrey Atkinson, Mikel Ghelfi, Sheila Smith, Hongbin Tu, Gerd Bobe, Chia-Ying Liu, David W. Herion, Robert D. Shamburek, Danny Manor, Maret G. Traber, Mark Levine

×

Athletes feature greater rates of muscle glucose transport and glycogen synthesis during lipid infusion
Esther Phielix, Paul Begovatz, Sofiya Gancheva, Alessandra Bierwagen, Esther Kornips, Gert Schaart, Matthijs K. C. Hesselink, Patrick Schrauwen, Michael Roden
Esther Phielix, Paul Begovatz, Sofiya Gancheva, Alessandra Bierwagen, Esther Kornips, Gert Schaart, Matthijs K. C. Hesselink, Patrick Schrauwen, Michael Roden
View: Text | PDF

Athletes feature greater rates of muscle glucose transport and glycogen synthesis during lipid infusion

  • Text
  • PDF
Abstract

BACKGROUND Insulin resistance results from impaired skeletal muscle glucose transport/phosphorylation, linked to augmented lipid availability. Despite greater intramuscular lipids, athletes are highly insulin sensitive, which could result from higher rates of insulin-stimulated glycogen synthesis or glucose transport/phosphorylation and oxidation. Thus, we examined the time course of muscle glycogen and glucose-6-phosphate concentrations during low and high systemic lipid availability.METHODS Eight endurance-trained and 9 sedentary humans (VO2 peak: 56 ± 2 vs. 33 ± 2 mL/kg/min, P < 0.05) underwent 6-hour hyperinsulinemic-isoglycemic clamp tests with infusions of triglycerides or saline in a randomized crossover design. Glycogen and glucose-6-phosphate concentrations were monitored in vastus lateralis muscles using 13C/31P magnetic resonance spectroscopy.RESULTS Athletes displayed a 25% greater (P < 0.05) insulin-stimulated glucose disposal rate (Rd) than sedentary participants. During Intralipid infusion, insulin sensitivity remained higher in the athletes (ΔRd: 25 ± 3 vs. 17 ± 3 μmol/kg/min, P < 0.05), supported by higher glucose transporter type 4 protein expression than in sedentary humans. Compared to saline infusion, AUC of glucose-6-phosphate remained unchanged during Intralipid infusion in athletes (1.6 ± 0.2 mmol/L vs. 1.4 ± 0.2 [mmol/L] × h, P = n.s.) but tended to decrease by 36% in sedentary humans (1.7 ± 0.4 vs. 1.1 ± 0.1 [mmol/L] × h, P < 0.059). This drop was accompanied by a 72% higher rate of net glycogen synthesis in the athletes upon Intralipid infusion (47 ± 9 vs. 13 ± 3 μmol/kg/min, P < 0.05).CONCLUSION Athletes feature higher skeletal muscle glucose disposal and glycogen synthesis during increased lipid availability, which primarily results from maintained insulin-stimulated glucose transport with increased myocellular glucose-6-phosphate levels for subsequent glycogen synthesis.TRIAL REGISTRATION ClinicalTrials.gov NCT01229059.FUNDING German Federal Ministry of Health (BMG).

Authors

Esther Phielix, Paul Begovatz, Sofiya Gancheva, Alessandra Bierwagen, Esther Kornips, Gert Schaart, Matthijs K. C. Hesselink, Patrick Schrauwen, Michael Roden

×

Glycemic effect of pancreatic preproglucagon in mouse sleeve gastrectomy
Ki-Suk Kim, Chelsea R. Hutch, Landon Wood, Irwin J. Magrisso, Randy J. Seeley, Darleen A. Sandoval
Ki-Suk Kim, Chelsea R. Hutch, Landon Wood, Irwin J. Magrisso, Randy J. Seeley, Darleen A. Sandoval
View: Text | PDF

Glycemic effect of pancreatic preproglucagon in mouse sleeve gastrectomy

  • Text
  • PDF
Abstract

Intestinally derived glucagon-like peptide-1 (GLP-1), encoded by the preproglucagon (Gcg) gene, is believed to function as an incretin. However, our previous work questioned this dogma and demonstrated that pancreatic peptides rather than intestinal Gcg peptides, including GLP-1, are a primary regulator of glucose homeostasis in normal mice. The objective of these experiments was to determine whether changes in nutrition or alteration of gut hormone secretion by bariatric surgery would result in a larger role for intestinal GLP-1 in the regulation of insulin secretion and glucose homeostasis. Multiple transgenic models, including mouse models with intestine- or pancreas tissue–specific Gcg expression and a whole-body Gcg-null mouse model, were generated to study the role of organ-specific GLP-1 production on glucose homeostasis under dietary-induced obesity and after weight loss from bariatric surgery (vertical sleeve gastrectomy; VSG). Our findings indicated that the intestine is a major source of circulating GLP-1 after various nutrient and surgical stimuli. However, even with the 4-fold increase in intestinally derived GLP-1 with VSG, it is pancreatic peptides, not intestinal Gcg peptides, that are necessary for surgery-induced improvements in glucose homeostasis.

Authors

Ki-Suk Kim, Chelsea R. Hutch, Landon Wood, Irwin J. Magrisso, Randy J. Seeley, Darleen A. Sandoval

×

Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis
Nathan L. Price, Verónica Miguel, Wen Ding, Abhishek K. Singh, Shipra Malik, Noemi Rotllan, Anna Moshnikova, Jakub Toczek, Caroline Zeiss, Mehran M. Sadeghi, Noemi Arias, Ángel Baldán, Oleg A. Andreev, Diego Rodríguez-Puyol, Raman Bahal, Yana K. Reshetnyak, Yajaira Suárez, Carlos Fernández-Hernando, Santiago Lamas
Nathan L. Price, Verónica Miguel, Wen Ding, Abhishek K. Singh, Shipra Malik, Noemi Rotllan, Anna Moshnikova, Jakub Toczek, Caroline Zeiss, Mehran M. Sadeghi, Noemi Arias, Ángel Baldán, Oleg A. Andreev, Diego Rodríguez-Puyol, Raman Bahal, Yana K. Reshetnyak, Yajaira Suárez, Carlos Fernández-Hernando, Santiago Lamas
View: Text | PDF

Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis

  • Text
  • PDF
Abstract

Previous work has reported the important links between cellular bioenergetics and the development of chronic kidney disease, highlighting the potential for targeting metabolic functions to regulate disease progression. More recently, it has been shown that alterations in fatty acid oxidation (FAO) can have an important impact on the progression of kidney disease. In this work, we demonstrate that loss of miR-33, an important regulator of lipid metabolism, can prevent the repression of FAO in fibrotic kidneys and reduce lipid accumulation. These changes were associated with a dramatic reduction in the extent of fibrosis induced in two different mouse models of kidney disease. These effects were not related to changes in circulating leukocytes, as bone marrow transplant from miR-33 deficient animals did not have a similar impact on disease progression. Most importantly, targeted delivery of miR-33 peptide nucleic acid (PNA) inhibitors to the kidney and other acidic microenvironments was accomplished using pH low insertion peptides (pHLIP) as a carrier. This was effective at both increasing the expression of factors involved in FAO and reducing the development of fibrosis. Together, these findings suggest that miR-33 may be an attractive therapeutic target for the treatment of chronic kidney disease.

Authors

Nathan L. Price, Verónica Miguel, Wen Ding, Abhishek K. Singh, Shipra Malik, Noemi Rotllan, Anna Moshnikova, Jakub Toczek, Caroline Zeiss, Mehran M. Sadeghi, Noemi Arias, Ángel Baldán, Oleg A. Andreev, Diego Rodríguez-Puyol, Raman Bahal, Yana K. Reshetnyak, Yajaira Suárez, Carlos Fernández-Hernando, Santiago Lamas

×

Transition to 37°C reveals importance of NADPH in mitigating oxidative stress in stored RBCs
Aline Roch, Nicholas J. Magon, Jessica Maire, Cacang Suarna, Anita Ayer, Sophie Waldvogel, Beat. A. Imhof, Mark J. Koury, Roland Stocker, Marc Schapira
Aline Roch, Nicholas J. Magon, Jessica Maire, Cacang Suarna, Anita Ayer, Sophie Waldvogel, Beat. A. Imhof, Mark J. Koury, Roland Stocker, Marc Schapira
View: Text | PDF

Transition to 37°C reveals importance of NADPH in mitigating oxidative stress in stored RBCs

  • Text
  • PDF
Abstract

The red blood cell (RBC) storage lesion is a multi-parametric response that occurs during storage at 4°C, but its impact on transfused patients remains unclear. In studies of the RBC storage lesion, the temperature transition from cold storage to normal body temperature that occurs during transfusion has received limited attention. We hypothesized that multiple deleterious events might occur in this period of increasing temperature. We show dramatic alterations in several properties of therapeutic blood units stored at 4°C after warming them to normal body temperature (37°C), as well as febrile temperature (40°C). In particular, the intracellular content and redox state of nicotinamide adenine dinucleotide phosphate [NADP(H)] were directly affected by post-storage incubation at 37°C, as well as by pro-oxidant storage conditions. Modulation of the NADPH-producing pentose phosphate pathway, but not the prevention of hemoglobin autoxidation by conversion of oxyhemoglobin to carboxyhemoglobin, provided protection against storage-induced alterations in RBCs, demonstrating the central role of NADPH in mitigating increased susceptibility of stored RBCs to oxidative stress. We propose that assessing RBCs oxidative status after restoration of body temperature provides a sensitive tool to detect storage-related alterations, and has the potential to improve the quality of stored RBCs for transfusion.

Authors

Aline Roch, Nicholas J. Magon, Jessica Maire, Cacang Suarna, Anita Ayer, Sophie Waldvogel, Beat. A. Imhof, Mark J. Koury, Roland Stocker, Marc Schapira

×

Rational combination with PDK1 inhibition overcomes cetuximab resistance in head and neck squamous cell carcinoma
Haiquan Lu, Yang Lu, Yangyiran Xie, Songbo Qiu, Xinqun Li, Zhen Fan
Haiquan Lu, Yang Lu, Yangyiran Xie, Songbo Qiu, Xinqun Li, Zhen Fan
View: Text | PDF

Rational combination with PDK1 inhibition overcomes cetuximab resistance in head and neck squamous cell carcinoma

  • Text
  • PDF
Abstract

Cetuximab, an EGFR-blocking antibody, is currently approved for treatment of metastatic head and neck squamous cell carcinoma (HNSCC), but its response rate is limited. In addition to blocking EGFR-stimulated cell signaling, cetuximab can induce endocytosis of ASCT2, a glutamine transporter associated with EGFR in a complex, leading to glutathione biosynthesis inhibition and cellular sensitization to ROS. Pyruvate dehydrogenase kinase-1 (PDK1), a key mitochondrial enzyme overexpressed in cancer cells, redirects glucose metabolism from oxidative phosphorylation toward aerobic glycolysis. In this study, we tested the hypothesis that targeting PDK1 is a rational approach to synergize with cetuximab through ROS overproduction. We found that combination of PDK1 knockdown or inhibition by dichloroacetic acid (DCA) with ASCT2 knockdown or with cetuximab treatment induced ROS overproduction and apoptosis in HNSCC cells, and this effect was independent of effective inhibition of EGFR downstream pathways but could be lessened by N-acetyl cysteine, an anti-oxidative agent. In several cetuximab-resistant HNSCC xenograft models, DCA plus cetuximab induced marked tumor regression, whereas either agent alone failed to induce tumor regression. Our findings call for potentially novel clinical trials of combining cetuximab and DCA in patients with cetuximab-sensitive EGFR-overexpressing tumors and patients with cetuximab-resistant EGFR-overexpressing tumors.

Authors

Haiquan Lu, Yang Lu, Yangyiran Xie, Songbo Qiu, Xinqun Li, Zhen Fan

×

Neuronal network dysfunction precedes storage and neurodegeneration in a lysosomal storage disorder
Rebecca C. Ahrens-Nicklas, Luis Tecedor, Arron Hall, Elena Lysenko, Akiva S. Cohen, Beverly L. Davidson, Eric D. Marsh
Rebecca C. Ahrens-Nicklas, Luis Tecedor, Arron Hall, Elena Lysenko, Akiva S. Cohen, Beverly L. Davidson, Eric D. Marsh
View: Text | PDF

Neuronal network dysfunction precedes storage and neurodegeneration in a lysosomal storage disorder

  • Text
  • PDF
Abstract

Accumulation of lysosomal storage material and late-stage neurodegeneration are hallmarks of lysosomal storage disorders (LSDs) affecting the brain. Yet, for most LSDs, including CLN3 disease, the most common form of childhood dementia, it is unclear what mechanisms drive neurologic symptoms. Do deficits arise from loss of function of the mutated protein or toxicity from storage accumulation? Here, using in vitro voltage sensitive dye imaging and in vivo electrophysiology, we find progressive hippocampal dysfunction occurs prior to notable lysosomal storage and neuronal loss in two CLN3 disease mouse models. Pharmacologic reversal of lysosomal storage deposition in young mice does not rescue this circuit dysfunction. Additionally, we find that CLN3 disease mice lose an electrophysiologic marker of new memory encoding – hippocampal sharp wave ripples. This discovery, which is also seen in Alzheimer’s disease, suggests the possibility of a shared electrophysiologic signature of dementia. Overall, our data describes new insights into previously unknown network-level changes occurring in LSDs affecting the central nervous system, and highlight the need for new therapeutic interventions targeting early circuit defects.

Authors

Rebecca C. Ahrens-Nicklas, Luis Tecedor, Arron Hall, Elena Lysenko, Akiva S. Cohen, Beverly L. Davidson, Eric D. Marsh

×

Increased lipogenesis and impaired β-oxidation predict type 2 diabetic kidney disease progression in American Indians
Farsad Afshinnia, Viji Nair, Jiahe Lin, Thekkelnaycke M. Rajendiran, Tanu Soni, Jaeman Byun, Kumar Sharma, Patrice E. Fort, Thomas W. Gardner, Helen C. Looker, Robert G. Nelson, Frank C. Brosius, Eva L. Feldman, George Michailidis, Matthias Kretzler, Subramaniam Pennathur
Farsad Afshinnia, Viji Nair, Jiahe Lin, Thekkelnaycke M. Rajendiran, Tanu Soni, Jaeman Byun, Kumar Sharma, Patrice E. Fort, Thomas W. Gardner, Helen C. Looker, Robert G. Nelson, Frank C. Brosius, Eva L. Feldman, George Michailidis, Matthias Kretzler, Subramaniam Pennathur
View: Text | PDF

Increased lipogenesis and impaired β-oxidation predict type 2 diabetic kidney disease progression in American Indians

  • Text
  • PDF
Abstract

Background: In this study, we aimed to identify the lipidomic predictors of early type-2 diabetic kidney disease (DKD) progression which are currently undefined DKD progression. Methods: This longitudinal study included 92 American Indians with type-2 diabetes. Serum lipids (406 from 18 classes) were quantified using mass spectrometry from baseline samples when iothalamate glomerular filtration rate (GFR) was ≥90 mL/min. Affymetrix GeneChip Array was used to measure renal transcript expression. DKD Progression was defined as ≥40% decline in GFR during follow up. Results: Participants had a mean age of 45±9 years and median urine albumin-creatinine ratio of 43 (interquartile range 11 to 144). The 32 progressors had significantly higher relative abundance of polyunsaturated triacylglycerols (TAG)s and a lower abundance of C16-20 acylcarnitines (AC)s (p<0.001). In a Cox regression model the main effect terms of unsaturated free fatty acids and phosphatidylethanolamines and the interaction terms of C16-20 ACs and short, low-double-bond TAGs by categories of albuminuria independently predicted progression of DKD. Renal expression of acetyl-CoA carboxylase encoding gene (ACACA) correlated with serum diacylglycerols in the glomerular compartment (r=0.36, p=0.006), and with low-double-bond TAGs in the tubulointerstitial compartment (r=0.52, p<0.001). Conclusion: Collectively, the findings reveal a previously unrecognized link between lipid markers of impaired mitochondrial β-oxidation and enhanced lipogenesis, with DKD progression, in individuals with preserved GFR. Renal acetyl-CoA carboxylase activation accompanies these lipidomic changes and suggests that it may be the underlying mechanism linking lipid abnormalities to DKD progression. Funding: R24DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, P30DK020572

Authors

Farsad Afshinnia, Viji Nair, Jiahe Lin, Thekkelnaycke M. Rajendiran, Tanu Soni, Jaeman Byun, Kumar Sharma, Patrice E. Fort, Thomas W. Gardner, Helen C. Looker, Robert G. Nelson, Frank C. Brosius, Eva L. Feldman, George Michailidis, Matthias Kretzler, Subramaniam Pennathur

×
  • ← Previous
  • 1
  • 2
  • …
  • 31
  • 32
  • 33
  • …
  • 47
  • 48
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts