Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Infectious disease

  • 307 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 29
  • 30
  • 31
  • Next →
BCG vaccination induces HIV target cell activation in HIV-exposed infants in a randomized trial
Melanie A. Gasper, … , Donald L. Sodora, Heather B. Jaspan
Melanie A. Gasper, … , Donald L. Sodora, Heather B. Jaspan
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e91963. https://doi.org/10.1172/jci.insight.91963.
View: Text | PDF

BCG vaccination induces HIV target cell activation in HIV-exposed infants in a randomized trial

  • Text
  • PDF
Abstract

BACKGROUND. Bacillus Calmette-Guérin (BCG) vaccine is administered at birth to protect infants against tuberculosis throughout Africa, where most perinatal HIV-1 transmission occurs. We examined whether BCG vaccination alters the levels of activated HIV target T cells in HIV-exposed South African infants.

METHODS. HIV-exposed infants were randomized to receive routine (at birth) or delayed (at 8 weeks) BCG vaccination. Activated and CCR5-expressing peripheral blood CD4+ T cell, monocyte, and NK cell frequencies were evaluated by flow cytometry and immune gene expression via PCR using Biomark (Fluidigm).

RESULTS. Of 149 infants randomized, 92% (n = 137) were retained at 6 weeks: 71 in the routine BCG arm and 66 in the delayed arm. Routine BCG vaccination led to a 3-fold increase in systemic activation of HIV target CD4+CCR5+ T cells (HLA-DR+CD38+) at 6 weeks (0.25% at birth versus 0.08% in delayed vaccination groups; P = 0.029), which persisted until 8 weeks of age when the delayed arm was vaccinated. Vaccination of the infants in the delayed arm at 8 weeks resulted in a similar increase in activated CD4+CCR5+ T cells. The increase in activated T cells was associated with increased levels of MHC class II transactivator (CIITA), IL12RB1, and IFN-α1 transcripts within peripheral blood mononuclear cells but minimal changes in innate cells.

CONCLUSION. BCG vaccination induces immune changes in HIV-exposed infants, including an increase in the proportion of activated CCR5+CD4+ HIV target cells. These findings provide insight into optimal BCG vaccine timing to minimize the risks of HIV transmissions to exposed infants while preserving potential benefits conferred by BCG vaccination.

TRIAL REGISTRATION. ClinicalTrials.gov NCT02062580.

FUNDING. This trial was sponsored by the Elizabeth Glaser Pediatric AIDS Foundation (MV-00-9-900-01871-0-00) and the Thrasher Foundation (NR-0095); for details, see Acknowledgments.

Authors

Melanie A. Gasper, Anneke C. Hesseling, Isaac Mohar, Landon Myer, Tali Azenkot, Jo-Ann S. Passmore, Willem Hanekom, Mark F. Cotton, I. Nicholas Crispe, Donald L. Sodora, Heather B. Jaspan

×

M1-like monocytes are a major immunological determinant of severity in previously healthy adults with life-threatening influenza
Suzanne L. Cole, … , Andrew J. McMichael, Ling-Pei Ho
Suzanne L. Cole, … , Andrew J. McMichael, Ling-Pei Ho
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e91868. https://doi.org/10.1172/jci.insight.91868.
View: Text | PDF

M1-like monocytes are a major immunological determinant of severity in previously healthy adults with life-threatening influenza

  • Text
  • PDF
Abstract

In each influenza season, a distinct group of young, otherwise healthy individuals with no risk factors succumbs to life-threatening infection. To better understand the cause for this, we analyzed a broad range of immune responses in blood from a unique cohort of patients, comprising previously healthy individuals hospitalized with and without respiratory failure during one influenza season, and infected with one specific influenza A strain. This analysis was compared with similarly hospitalized influenza patients with known risk factors (total of n = 60 patients recruited). We found a sustained increase in a specific subset of proinflammatory monocytes, with high TNF-α expression and an M1-like phenotype (independent of viral titers), in these previously healthy patients with severe disease. The relationship between M1-like monocytes and immunopathology was strengthened using murine models of influenza, in which severe infection generated using different models (including the high-pathogenicity H5N1 strain) was also accompanied by high levels of circulating M1-like monocytes. Additionally, a raised M1/M2 macrophage ratio in the lungs was observed. These studies identify a specific subtype of monocytes as a modifiable immunological determinant of disease severity in this subgroup of severely ill, previously healthy patients, offering potential novel therapeutic avenues.

Authors

Suzanne L. Cole, Jake Dunning, Wai Ling Kok, Kambez Hajipouran Benam, Adel Benlahrech, Emmanouela Repapi, Fernando O. Martinez, Lydia Drumright, Timothy J. Powell, Michael Bennett, Ruth Elderfield, Catherine Thomas, MOSAIC investigators, Tao Dong, John McCauley, Foo Y. Liew, Stephen Taylor, Maria Zambon, Wendy Barclay, Vincenzo Cerundolo, Peter J. Openshaw, Andrew J. McMichael, Ling-Pei Ho

×

Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus
Pierre Roques, … , Roger Le Grand, Peter Liljeström
Pierre Roques, … , Roger Le Grand, Peter Liljeström
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e83527. https://doi.org/10.1172/jci.insight.83527.
View: Text | PDF

Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus

  • Text
  • PDF
Abstract

Chikungunya virus (CHIKV) is rapidly spreading across the globe, and millions are infected. Morbidity due to this virus is a serious threat to public health, but at present, there is no vaccine against this debilitating disease. We have recently developed a number of vaccine candidates, and here we have evaluated 3 of them in a nonhuman primate model. A single immunization with an attenuated strain of CHIKV (Δ5nsP3), a homologous prime-boost immunization with a DNA-launched RNA replicon encoding CHIKV envelope proteins (DREP-E), and a DREP-E prime followed by a recombinant modified vaccinia virus Ankara encoding CHIKV capsid and envelope (MVA-CE) boost all induced protection against WT CHIKV infection. The attenuated Δ5nsP3 virus proved to be safe and did not show any clinical signs typically associated with WT CHIKV infections such as fever, skin rash, lymphopenia, or joint swelling. These vaccines are based on an East/Central/South African strain of Indian Ocean lineage, but they also generated neutralizing antibodies against an isolate of the Asian genotype that now is rapidly spreading across the Americas. These results form the basis for clinical development of an efficacious CHIKV vaccine that generates both humoral and cellular immunity with long-term immunological memory.

Authors

Pierre Roques, Karl Ljungberg, Beate M. Kümmerer, Leslie Gosse, Nathalie Dereuddre-Bosquet, Nicolas Tchitchek, David Hallengärd, Juan García-Arriaza, Andreas Meinke, Mariano Esteban, Andres Merits, Roger Le Grand, Peter Liljeström

×

Clinical, virological, and biological parameters associated with outcomes of Ebola virus infection in Macenta, Guinea
Marie-Astrid Vernet, … , François L’Hériteau, Sylvain Baize
Marie-Astrid Vernet, … , François L’Hériteau, Sylvain Baize
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e88864. https://doi.org/10.1172/jci.insight.88864.
View: Text | PDF

Clinical, virological, and biological parameters associated with outcomes of Ebola virus infection in Macenta, Guinea

  • Text
  • PDF
Abstract

BACKGROUND. The pathogenesis of Ebola virus (EBOV) disease (EVD) is poorly characterized. The establishment of well-equipped diagnostic laboratories close to Ebola treatment centers (ETCs) has made it possible to obtain relevant virological and biological data during the course of EVD and to assess their association with the clinical course and different outcomes of the disease.

METHODS. We were responsible for diagnosing EBOV infection in patients admitted to two ETCs in forested areas of Guinea. The pattern of clinical signs was recorded, and an etiological diagnosis was established by RT-PCR for EBOV infection or a rapid test for malaria and typhoid fever. Biochemical analyses were also performed.

RESULTS. We handled samples from 168 patients between November 29, 2014, and January 31, 2015; 97 patients were found to be infected with EBOV, with Plasmodium falciparum coinfection in 18%. Overall mortality for EVD cases was 58%, rising to 86% if P. falciparum was also present. Viral load was higher in fatal cases of EVD than in survivors, and fatal cases were associated with higher aspartate aminotransferase (AST) and alanine aminotransferase (ALT), C-reactive protein (CRP), and IL-6 levels. Furthermore, regardless of outcome, EVD was characterized by higher creatine kinase (CPK), amylase, and creatinine levels than in febrile patients without EVD, with higher blood urea nitrogen (BUN) levels in fatal cases of EVD only.

CONCLUSION. These findings suggest that a high viral load at admission is a marker of poor EVD prognosis. In addition, high AST, ALT, CRP, and IL-6 levels are associated with a fatal outcome of EVD. Damage to the liver and other tissues, with massive rhabdomyolysis and, probably, acute pancreatitis, is associated with EVD and correlated with disease severity. Finally, biochemical analyses provide substantial added value at ETCs, making it possible to improve supportive rehydration and symptomatic care for patients.

FUNDING. The French Ministry of Foreign Affairs, the Agence Française de Développement, and Institut Pasteur.

Authors

Marie-Astrid Vernet, Stéphanie Reynard, Alexandra Fizet, Justine Schaeffer, Delphine Pannetier, Jeremie Guedj, Max Rives, Nadia Georges, Nathalie Garcia-Bonnet, Aboubacar I. Sylla, Péma Grovogui, Jean-Yves Kerherve, Christophe Savio, Sylvie Savio-Coste, Marie-Laure de Séverac, Philippe Zloczewski, Sandrine Linares, Souley Harouna, Bing M’Lebing Abdoul, Frederic Petitjean, Nenefing Samake, Susan Shepherd, Moumouni Kinda, Fara Roger Koundouno, Ludovic Joxe, Mathieu Mateo, Patrick Lecine, Audrey Page, Tang Maleki Tchamdja, Matthieu Schoenhals, Solenne Barbe, Bernard Simon, Tuan Tran-Minh, Christophe Longuet, François L’Hériteau, Sylvain Baize

×

Hepcidin-mediated iron sequestration protects against bacterial dissemination during pneumonia
Kathryn R. Michels, … , Tomas Ganz, Borna Mehrad
Kathryn R. Michels, … , Tomas Ganz, Borna Mehrad
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e92002. https://doi.org/10.1172/jci.insight.92002.
View: Text | PDF

Hepcidin-mediated iron sequestration protects against bacterial dissemination during pneumonia

  • Text
  • PDF
Abstract

Gram-negative pneumonia is a dangerous illness, and bacterial dissemination to the bloodstream during the infection is strongly associated with death. Antibiotic resistance among the causative pathogens has resulted in diminishing treatment options against this infection. Hepcidin is the master regulator of extracellular iron availability in vertebrates, but its role in the context of host defense is undefined. We hypothesized that hepcidin-mediated depletion of extracellular iron during Gram-negative pneumonia protects the host by limiting dissemination of bacteria to the bloodstream. During experimental pneumonia, hepcidin was induced in the liver in an IL-6–dependent manner and mediated a rapid decline in plasma iron. In contrast, hepcidin-deficient mice developed a paradoxical increase in plasma iron during infection associated with profound susceptibility to bacteremia. Incubation of bacteria with iron-supplemented plasma enhanced bacterial growth in vitro, and systemic administration of iron to WT mice similarly promoted increased susceptibility to bloodstream infection. Finally, treatment with a hepcidin analogue restored hypoferremia in hepcidin-deficient hosts, mediated bacterial control, and improved outcomes. These data show hepcidin induction during pneumonia to be essential to preventing bacterial dissemination by limiting extracellular iron availability. Hepcidin agonists may represent an effective therapy for Gram-negative infections in patients with impaired hepcidin production or signaling.

Authors

Kathryn R. Michels, Zhimin Zhang, Alexandra M. Bettina, R. Elaine Cagnina, Debora Stefanova, Marie D. Burdick, Sophie Vaulont, Elizabeta Nemeth, Tomas Ganz, Borna Mehrad

×

Enhanced FCGR2A and FCGR3A signaling by HIV viremic controller IgG
Raymond A. Alvarez, … , Viviana Simon, Benjamin K. Chen
Raymond A. Alvarez, … , Viviana Simon, Benjamin K. Chen
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e88226. https://doi.org/10.1172/jci.insight.88226.
View: Text | PDF

Enhanced FCGR2A and FCGR3A signaling by HIV viremic controller IgG

  • Text
  • PDF
Abstract

HIV-1 viremic controllers (VC) spontaneously control infection without antiretroviral treatment. Several studies indicate that IgG Abs from VCs induce enhanced responses from immune effector cells. Since signaling through Fc-γ receptors (FCGRs) modulate these Ab-driven responses, here we examine if enhanced FCGR activation is a common feature of IgG from VCs. Using an infected cell–based system, we observed that VC IgG stimulated greater FCGR2A and FCGR3A activation as compared with noncontrollers, independent of the magnitude of HIV-specific Ab binding or virus neutralization activities. Multivariate regression analysis showed that enhanced FCGR signaling was a significant predictor of VC status as compared with chronically infected patients (CIP) on highly active antiretroviral therapy (HAART). Unsupervised hierarchical clustering of patient IgG functions primarily grouped VC IgG profiles by enhanced FCGR2A, FCGR3A, or dual signaling activity. Our findings demonstrate that enhanced FCGR signaling is a common and significant predictive feature of VC IgG, with VCs displaying a distinct spectrum of FCGR activation profiles. Thus, profiling FCGR activation may provide a useful method for screening and distinguishing protective anti-HIV IgG responses in HIV-infected patients and in monitoring HIV vaccination regimens.

Authors

Raymond A. Alvarez, Ana M. Maestre, Kenneth Law, Natasha D. Durham, Maria Ines Barria, Akiko Ishii-Watabe, Minoru Tada, Manav Kapoor, Mathew T. Hotta, Gabriela Rodriguez-Caprio, Daniel S. Fierer, Ana Fernandez-Sesma, Viviana Simon, Benjamin K. Chen

×

Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes
Pawan Kumar Singh, … , Fu-Shin Yu, Ashok Kumar
Pawan Kumar Singh, … , Fu-Shin Yu, Ashok Kumar
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e92340. https://doi.org/10.1172/jci.insight.92340.
View: Text | PDF

Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes

  • Text
  • PDF
Abstract

Zika virus (ZIKV) is an important pathogen that causes not only neurologic, but also ocular, abnormalities. Thus, it is imperative that models to study ZIKV pathogenesis in the eye are developed to identify potential targets for interventions. Here, we studied ZIKV interactions with human retinal cells and evaluated ZIKV’s pathobiology in mouse eyes. We showed that cells lining the blood-retinal barrier (BRB), the retinal endothelium, and retinal pigment epithelium (RPE) were highly permissive and susceptible to ZIKV-induced cell death. Direct inoculation of ZIKV in eyes of adult C57BL/6 and IFN-stimulated gene 15 (ISG15) KO mice caused chorioretinal atrophy with RPE mottling, a common ocular manifestation of congenital ZIKV infection in humans. This response was associated with induced expression of multiple inflammatory and antiviral (IFNs) response genes in the infected mouse retina. Interestingly, ISG15 KO eyes exhibited severe chorioretinitis, which coincided with increased retinal cell death and higher ZIKV replication. Collectively, our study provides the first evidence to our knowledge that ZIKV causes retinal lesions and infects the cells lining the BRB and that ISG15 plays a role in retinal innate defense against ZIKV infection. Our mouse model can be used to study mechanisms underlying ZIKV-induced chorioretinitis and to gauge ocular antiviral therapies.

Authors

Pawan Kumar Singh, John-Michael Guest, Mamta Kanwar, Joseph Boss, Nan Gao, Mark S. Juzych, Gary W. Abrams, Fu-Shin Yu, Ashok Kumar

×

Acquired resistance to innate immune clearance promotes Klebsiella pneumoniae ST258 pulmonary infection
Danielle Ahn, … , Anne-Catrin Uhlemann, Alice Prince
Danielle Ahn, … , Anne-Catrin Uhlemann, Alice Prince
Published October 20, 2016
Citation Information: JCI Insight. 2016;1(17):e89704. https://doi.org/10.1172/jci.insight.89704.
View: Text | PDF

Acquired resistance to innate immune clearance promotes Klebsiella pneumoniae ST258 pulmonary infection

  • Text
  • PDF
Abstract

Adaptive changes in the genome of a locally predominant clinical isolate of the multidrug-resistant Klebsiella pneumoniae ST258 (KP35) were identified and help to explain the selection of this strain as a successful pulmonary pathogen. The acquisition of 4 new ortholog groups, including an arginine transporter, enabled KP35 to outcompete related ST258 strains lacking these genes. KP35 infection elicited a monocytic response, dominated by Ly6Chi monocytic myeloid-derived suppressor cells that lacked phagocytic capabilities, expressed IL-10, arginase, and antiinflammatory surface markers. In comparison with other K. pneumoniae strains, KP35 induced global changes in the phagocytic response identified with proteomics, including evasion of Ca2+ and calpain activation necessary for phagocytic killing, confirmed in functional studies with neutrophils. This comprehensive analysis of an ST258 K. pneumoniae isolate reveals ongoing genetic adaptation to host microenvironments and innate immune clearance mechanisms that complements its repertoire of antimicrobial resistance genes and facilitates persistence in the lung.

Authors

Danielle Ahn, Hernán Peñaloza, Zheng Wang, Matthew Wickersham, Dane Parker, Purvi Patel, Antonius Koller, Emily I. Chen, Susan M. Bueno, Anne-Catrin Uhlemann, Alice Prince

×

Extrapulmonary Aspergillus infection in patients with CARD9 deficiency
Nikolaus Rieber, … , Taco W. Kuijpers, Michail S. Lionakis
Nikolaus Rieber, … , Taco W. Kuijpers, Michail S. Lionakis
Published October 20, 2016
Citation Information: JCI Insight. 2016;1(17):e89890. https://doi.org/10.1172/jci.insight.89890.
View: Text | PDF

Extrapulmonary Aspergillus infection in patients with CARD9 deficiency

  • Text
  • PDF
Abstract

Invasive pulmonary aspergillosis is a life-threatening mycosis that only affects patients with immunosuppression, chemotherapy-induced neutropenia, transplantation, or congenital immunodeficiency. We studied the clinical, genetic, histological, and immunological features of 2 unrelated patients without known immunodeficiency who developed extrapulmonary invasive aspergillosis at the ages of 8 and 18. One patient died at age 12 with progressive intra-abdominal aspergillosis. The other patient had presented with intra-abdominal candidiasis at age 9, and developed central nervous system aspergillosis at age 18 and intra-abdominal aspergillosis at age 25. Neither patient developed Aspergillus infection of the lungs. One patient had homozygous M1I CARD9 (caspase recruitment domain family member 9) mutation, while the other had homozygous Q295X CARD9 mutation; both patients lacked CARD9 protein expression. The patients had normal monocyte and Th17 cell numbers in peripheral blood, but their mononuclear cells exhibited impaired production of proinflammatory cytokines upon fungus-specific stimulation. Neutrophil phagocytosis, killing, and oxidative burst against Aspergillus fumigatus were intact, but neither patient accumulated neutrophils in infected tissue despite normal neutrophil numbers in peripheral blood. The neutrophil tissue accumulation defect was not caused by defective neutrophil-intrinsic chemotaxis, indicating that production of neutrophil chemoattractants in extrapulmonary tissue is impaired in CARD9 deficiency. Taken together, our results show that CARD9 deficiency is the first known inherited or acquired condition that predisposes to extrapulmonary Aspergillus infection with sparing of the lungs, associated with impaired neutrophil recruitment to the site of infection.

Authors

Nikolaus Rieber, Roel P. Gazendam, Alexandra F. Freeman, Amy P. Hsu, Amanda L. Collar, Janyce A. Sugui, Rebecca A. Drummond, Chokechai Rongkavilit, Kevin Hoffman, Carolyn Henderson, Lily Clark, Markus Mezger, Muthulekha Swamydas, Maik Engeholm, Rebecca Schüle, Bettina Neumayer, Frank Ebel, Constantinos M. Mikelis, Stefania Pittaluga, Vinod K. Prasad, Anurag Singh, Joshua D. Milner, Kelli W. Williams, Jean K. Lim, Kyung J. Kwon-Chung, Steven M. Holland, Dominik Hartl, Taco W. Kuijpers, Michail S. Lionakis

×

Blood transcriptomic diagnosis of pulmonary and extrapulmonary tuberculosis
Jennifer K Roe, … , Adrian Martineau, Mahdad Noursadeghi
Jennifer K Roe, … , Adrian Martineau, Mahdad Noursadeghi
Published October 6, 2016
Citation Information: JCI Insight. 2016;1(16):e87238. https://doi.org/10.1172/jci.insight.87238.
View: Text | PDF

Blood transcriptomic diagnosis of pulmonary and extrapulmonary tuberculosis

  • Text
  • PDF
Abstract

BACKGROUND. Novel rapid diagnostics for active tuberculosis (TB) are required to overcome the time delays and inadequate sensitivity of current microbiological tests that are critically dependent on sampling the site of disease. Multiparametric blood transcriptomic signatures of TB have been described as potential diagnostic tests. We sought to identify the best transcript candidates as host biomarkers for active TB, extend the evaluation of their specificity by comparison with other infectious diseases, and to test their performance in both pulmonary and extrapulmonary TB.

METHODS. Support vector machine learning, combined with feature selection, was applied to new and previously published blood transcriptional profiles in order to identify the minimal TB‑specific transcriptional signature shared by multiple patient cohorts including pulmonary and extrapulmonary TB, and individuals with and without HIV-1 coinfection.

RESULTS. We identified and validated elevated blood basic leucine zipper transcription factor 2 (BATF2) transcript levels as a single sensitive biomarker that discriminated active pulmonary and extrapulmonary TB from healthy individuals, with receiver operating characteristic (ROC) area under the curve (AUC) scores of 0.93 to 0.99 in multiple cohorts of HIV-1–negative individuals, and 0.85 in HIV-1–infected individuals. In addition, we identified and validated a potentially novel 4-gene signature comprising CD177, haptoglobin, immunoglobin J chain, and galectin 10 that discriminated active pulmonary and extrapulmonary TB from other febrile infections, giving ROC AUCs of 0.94 to 1.

CONCLUSIONS. Elevated blood BATF2 transcript levels provide a sensitive biomarker that discriminates active TB from healthy individuals, and a potentially novel 4-gene transcriptional signature differentiates between active TB and other infectious diseases in individuals presenting with fever.

FUNDING. MRC, Wellcome Trust, Rosetrees Trust, British Lung Foundation, NIHR.

Authors

Jennifer K Roe, Niclas Thomas, Eliza Gil, Katharine Best, Evdokia Tsaliki, Stephen Morris‑Jones, Sian Stafford, Nandi Simpson, Karolina D Witt, Benjamin Chain, Robert F Miller, Adrian Martineau, Mahdad Noursadeghi

×
  • ← Previous
  • 1
  • 2
  • …
  • 29
  • 30
  • 31
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts