Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Infectious disease

  • 315 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 26
  • 27
  • 28
  • …
  • 31
  • 32
  • Next →
Chronic infection stunts macrophage heterogeneity and disrupts immune-mediated myogenesis
Richard M. Jin, Jordan Warunek, Elizabeth A. Wohlfert
Richard M. Jin, Jordan Warunek, Elizabeth A. Wohlfert
View: Text | PDF

Chronic infection stunts macrophage heterogeneity and disrupts immune-mediated myogenesis

  • Text
  • PDF
Abstract

The robust regenerative potential of skeletal muscle is imperative for the maintenance of tissue function across a host of potential insults including exercise, infection, and trauma. The highly coordinated action of multiple immune populations, especially macrophages, plays an indispensable role in guiding this reparative program. However, it remains unclear how skeletal muscle repair proceeds in a chronically inflamed setting, such as infection, where an active immune response is already engaged. To address this question, we used a cardiotoxin injury model to challenge the reparative potential of chronically infected muscle. Compared with regenerating naive skeletal muscle, infected skeletal muscle exhibited multiple indicators of delayed muscle repair including a divergent morphologic response to injury and dysregulated expression of myogenic regulatory factors. Further, using both flow cytometric and single-cell RNA sequencing approaches, we show that reduced macrophage heterogeneity due to delayed emergence of restorative subsets underlies dysfunctional tissue repair during chronic infection. Our findings highlight how the preexisting inflammatory environment within tissue alters reparative immunity and ultimately the quality of tissue regeneration.

Authors

Richard M. Jin, Jordan Warunek, Elizabeth A. Wohlfert

×

Haptoglobin improves shock, lung injury, and survival in canine pneumonia
Kenneth E. Remy, Irene Cortés-Puch, Steven B. Solomon, Junfeng Sun, Benjamin M. Pockros, Jing Feng, Juan J. Lertora, Roy R. Hantgan, Xiaohua Liu, Andreas Perlegas, H. Shaw Warren, Mark T. Gladwin, Daniel B. Kim-Shapiro, Harvey G. Klein, Charles Natanson
Kenneth E. Remy, Irene Cortés-Puch, Steven B. Solomon, Junfeng Sun, Benjamin M. Pockros, Jing Feng, Juan J. Lertora, Roy R. Hantgan, Xiaohua Liu, Andreas Perlegas, H. Shaw Warren, Mark T. Gladwin, Daniel B. Kim-Shapiro, Harvey G. Klein, Charles Natanson
View: Text | PDF

Haptoglobin improves shock, lung injury, and survival in canine pneumonia

  • Text
  • PDF
Abstract

During the last half-century, numerous antiinflammatory agents were tested in dozens of clinical trials and have proven ineffective for treating septic shock. The observation in multiple studies that cell-free hemoglobin (CFH) levels are elevated during clinical sepsis and that the degree of increase correlates with higher mortality suggests an alternative approach. Human haptoglobin binds CFH with high affinity and, therefore, can potentially reduce iron availability and oxidative activity. CFH levels are elevated over approximately 24–48 hours in our antibiotic-treated canine model of S. aureus pneumonia that simulates the cardiovascular abnormalities of human septic shock. In this 96-hour model, resuscitative treatments, mechanical ventilation, sedation, and continuous care are translatable to management in human intensive care units. We found, in this S. aureus pneumonia model inducing septic shock, that commercial human haptoglobin concentrate infusions over 48-hours bind canine CFH, increase CFH clearance, and lower circulating iron. Over the 96-hour study, this treatment was associated with an improved metabolic profile (pH, lactate), less lung injury, reversal of shock, and increased survival. Haptoglobin binding compartmentalized CFH to the intravascular space. This observation, in combination with increasing CFHs clearance, reduced available iron as a potential source of bacterial nutrition while decreasing the ability for CFH and iron to cause extravascular oxidative tissue injury. In contrast, haptoglobin therapy had no measurable antiinflammatory effect on elevations in proinflammatory C-reactive protein and cytokine levels. Haptoglobin therapy enhances normal host defense mechanisms in contrast to previously studied antiinflammatory sepsis therapies, making it a biologically plausible novel approach to treat septic shock.

Authors

Kenneth E. Remy, Irene Cortés-Puch, Steven B. Solomon, Junfeng Sun, Benjamin M. Pockros, Jing Feng, Juan J. Lertora, Roy R. Hantgan, Xiaohua Liu, Andreas Perlegas, H. Shaw Warren, Mark T. Gladwin, Daniel B. Kim-Shapiro, Harvey G. Klein, Charles Natanson

×

Mouse model of Gram-negative prosthetic joint infection reveals therapeutic targets
John M. Thompson, Robert J. Miller, Alyssa G. Ashbaugh, Carly A. Dillen, Julie E. Pickett, Yu Wang, Roger V. Ortines, Robert S. Sterling, Kevin P. Francis, Nicholas M. Bernthal, Taylor S. Cohen, Christine Tkaczyk, Li Yu, C. Kendall Stover, Antonio DiGiandomenico, Bret R. Sellman, Daniel L.J. Thorek, Lloyd S. Miller
John M. Thompson, Robert J. Miller, Alyssa G. Ashbaugh, Carly A. Dillen, Julie E. Pickett, Yu Wang, Roger V. Ortines, Robert S. Sterling, Kevin P. Francis, Nicholas M. Bernthal, Taylor S. Cohen, Christine Tkaczyk, Li Yu, C. Kendall Stover, Antonio DiGiandomenico, Bret R. Sellman, Daniel L.J. Thorek, Lloyd S. Miller
View: Text | PDF

Mouse model of Gram-negative prosthetic joint infection reveals therapeutic targets

  • Text
  • PDF
Abstract

Bacterial biofilm infections of implantable medical devices decrease the effectiveness of antibiotics, creating difficult-to-treat chronic infections. Prosthetic joint infections (PJI) are particularly problematic because they require prolonged antibiotic courses and reoperations to remove and replace the infected prostheses. Current models to study PJI focus on Gram-positive bacteria, but Gram-negative PJI (GN-PJI) are increasingly common and are often more difficult to treat, with worse clinical outcomes. Herein, we sought to develop a mouse model of GN-PJI to investigate the pathogenesis of these infections and identify potential therapeutic targets. An orthopedic-grade titanium implant was surgically placed in the femurs of mice, followed by infection of the knee joint with Pseudomonas aeruginosa or Escherichia coli. We found that in vitro biofilm-producing activity was associated with the development of an in vivo orthopedic implant infection characterized by bacterial infection of the bone/joint tissue, biofilm formation on the implants, reactive bone changes, and inflammatory immune cell infiltrates. In addition, a bispecific antibody targeting P. aeruginosa virulence factors (PcrV and Psl exopolysaccharide) reduced the bacterial burden in vivo. Taken together, our findings provide a preclinical model of GN-PJI and suggest the therapeutic potential of targeting biofilm-associated antigens.

Authors

John M. Thompson, Robert J. Miller, Alyssa G. Ashbaugh, Carly A. Dillen, Julie E. Pickett, Yu Wang, Roger V. Ortines, Robert S. Sterling, Kevin P. Francis, Nicholas M. Bernthal, Taylor S. Cohen, Christine Tkaczyk, Li Yu, C. Kendall Stover, Antonio DiGiandomenico, Bret R. Sellman, Daniel L.J. Thorek, Lloyd S. Miller

×

Human defects in STAT3 promote oral mucosal fungal and bacterial dysbiosis
Loreto Abusleme, Patricia I. Diaz, Alexandra F. Freeman, Teresa Greenwell-Wild, Laurie Brenchley, Jigar V. Desai, Weng-Ian Ng, Steven M. Holland, Michail S. Lionakis, Julia A. Segre, Heidi H. Kong, Niki M. Moutsopoulos
Loreto Abusleme, Patricia I. Diaz, Alexandra F. Freeman, Teresa Greenwell-Wild, Laurie Brenchley, Jigar V. Desai, Weng-Ian Ng, Steven M. Holland, Michail S. Lionakis, Julia A. Segre, Heidi H. Kong, Niki M. Moutsopoulos
View: Text | PDF

Human defects in STAT3 promote oral mucosal fungal and bacterial dysbiosis

  • Text
  • PDF
Abstract

Studies in patients with genetic defects can provide unique insights regarding the role of specific genes and pathways in humans. Patients with defects in the Th17/IL-17 axis, such as patients harboring loss-of-function STAT3 mutations (autosomal-dominant hyper IgE syndrome; AD-HIES) present with recurrent oral fungal infections. Our studies aimed to comprehensively evaluate consequences of STAT3 deficiency on the oral commensal microbiome. We characterized fungal and bacterial communities in AD-HIES in the presence and absence of oral fungal infection compared with healthy volunteers. Analyses of oral mucosal fungal communities in AD-HIES revealed severe dysbiosis with dominance of Candida albicans (C. albicans) in actively infected patients and minimal representation of health-associated fungi and/or opportunists. Bacterial communities also displayed dysbiosis in AD-HIES, particularly in the setting of active Candida infection. Active candidiasis was associated with decreased microbial diversity and enrichment of the streptococci Streptococcus oralis (S. oralis) and S. mutans, suggesting an interkingdom interaction of C. albicans with oral streptococci. Increased abundance of S. mutans was consistent with susceptibility to dental caries in AD-HIES. Collectively, our findings illustrate a critical role for STAT3/Th17 in the containment of C. albicans as a commensal organism and an overall contribution in the establishment of fungal and bacterial oral commensal communities.

Authors

Loreto Abusleme, Patricia I. Diaz, Alexandra F. Freeman, Teresa Greenwell-Wild, Laurie Brenchley, Jigar V. Desai, Weng-Ian Ng, Steven M. Holland, Michail S. Lionakis, Julia A. Segre, Heidi H. Kong, Niki M. Moutsopoulos

×

Enterovirus D68 infection induces IL-17–dependent neutrophilic airway inflammation and hyperresponsiveness
Charu Rajput, Mingyuan Han, J. Kelley Bentley, Jing Lei, Tomoko Ishikawa, Qian Wu, Joanna L. Hinde, Amy P. Callear, Terri L. Stillwell, William T. Jackson, Emily T. Martin, Marc B. Hershenson
Charu Rajput, Mingyuan Han, J. Kelley Bentley, Jing Lei, Tomoko Ishikawa, Qian Wu, Joanna L. Hinde, Amy P. Callear, Terri L. Stillwell, William T. Jackson, Emily T. Martin, Marc B. Hershenson
View: Text | PDF

Enterovirus D68 infection induces IL-17–dependent neutrophilic airway inflammation and hyperresponsiveness

  • Text
  • PDF
Abstract

Enterovirus D68 (EV-D68) shares biologic features with rhinovirus (RV). In 2014, a nationwide outbreak of EV-D68 was associated with severe asthma-like symptoms. We sought to develop a mouse model of EV-D68 infection and determine the mechanisms underlying airway disease. BALB/c mice were inoculated intranasally with EV-D68 (2014 isolate), RV-A1B, or sham, alone or in combination with anti–IL-17A or house dust mite (HDM) treatment. Like RV-A1B, lung EV-D68 viral RNA peaked 12 hours after infection. EV-D68 induced airway inflammation, expression of cytokines (TNF-α, IL-6, IL-12b, IL-17A, CXCL1, CXCL2, CXCL10, and CCL2), and airway hyperresponsiveness, which were suppressed by anti–IL-17A antibody. Neutrophilic inflammation and airway responsiveness were significantly higher after EV-D68 compared with RV-A1B infection. Flow cytometry showed increased lineage–, NKp46–, RORγt+ IL-17+ILC3s and γδ T cells in the lungs of EV-D68–treated mice compared with those in RV-treated mice. EV-D68 infection of HDM-exposed mice induced additive or synergistic increases in BAL neutrophils and eosinophils and expression of IL-17, CCL11, IL-5, and Muc5AC. Finally, patients from the 2014 epidemic period with EV-D68 showed significantly higher nasopharyngeal IL-17 mRNA levels compared with patients with RV-A infection. EV-D68 infection induces IL-17–dependent airway inflammation and hyperresponsiveness, which is greater than that generated by RV-A1B, consistent with the clinical picture of severe asthma-like symptoms.

Authors

Charu Rajput, Mingyuan Han, J. Kelley Bentley, Jing Lei, Tomoko Ishikawa, Qian Wu, Joanna L. Hinde, Amy P. Callear, Terri L. Stillwell, William T. Jackson, Emily T. Martin, Marc B. Hershenson

×

Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival
Charles E. McCall, Manal Zabalawi, Tiefu Liu, Ayana Martin, David L. Long, Nancy L. Buechler, Rob J. W. Arts, Mihai Netea, Barbara K. Yoza, Peter W. Stacpoole, Vidula Vachharajani
Charles E. McCall, Manal Zabalawi, Tiefu Liu, Ayana Martin, David L. Long, Nancy L. Buechler, Rob J. W. Arts, Mihai Netea, Barbara K. Yoza, Peter W. Stacpoole, Vidula Vachharajani
View: Text | PDF

Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival

  • Text
  • PDF
Abstract

Limited understanding of the mechanisms responsible for life-threatening organ and immune failure hampers scientists’ ability to design sepsis treatments. Pyruvate dehydrogenase kinase 1 (PDK1) is persistently expressed in immune-tolerant monocytes of septic mice and humans and deactivates mitochondrial pyruvate dehydrogenase complex (PDC), the gate-keeping enzyme for glucose oxidation. Here, we show that targeting PDK with its prototypic inhibitor dichloroacetate (DCA) reactivates PDC; increases mitochondrial oxidative bioenergetics in isolated hepatocytes and splenocytes; promotes vascular, immune, and organ homeostasis; accelerates bacterial clearance; and increases survival. These results indicate that the PDC/PDK axis is a druggable mitochondrial target for promoting immunometabolic and organ homeostasis during sepsis.

Authors

Charles E. McCall, Manal Zabalawi, Tiefu Liu, Ayana Martin, David L. Long, Nancy L. Buechler, Rob J. W. Arts, Mihai Netea, Barbara K. Yoza, Peter W. Stacpoole, Vidula Vachharajani

×

Chikungunya virus impairs draining lymph node function by inhibiting HEV-mediated lymphocyte recruitment
Mary K. McCarthy, Bennett J. Davenport, Glennys V. Reynoso, Erin D. Lucas, Nicholas A. May, Susan A. Elmore, Beth A. Tamburini, Heather D. Hickman, Thomas E. Morrison
Mary K. McCarthy, Bennett J. Davenport, Glennys V. Reynoso, Erin D. Lucas, Nicholas A. May, Susan A. Elmore, Beth A. Tamburini, Heather D. Hickman, Thomas E. Morrison
View: Text | PDF

Chikungunya virus impairs draining lymph node function by inhibiting HEV-mediated lymphocyte recruitment

  • Text
  • PDF
Abstract

Chikungunya virus (CHIKV) causes acute and chronic rheumatologic disease. Pathogenic CHIKV strains persist in joints of immunocompetent mice, while the attenuated CHIKV strain 181/25 is cleared by adaptive immunity. We analyzed the draining lymph node (dLN) to define events in lymphoid tissue that may contribute to CHIKV persistence or clearance. Acute 181/25 infection resulted in dLN enlargement and germinal center (GC) formation, while the dLN of mice infected with pathogenic CHIKV became highly disorganized and depleted of lymphocytes. Using CHIKV strains encoding ovalbumin-specific TCR epitopes, we found that lymphocyte depletion was not due to impaired lymphocyte proliferation. Instead, the accumulation of naive lymphocytes transferred from the vasculature to the dLN was reduced, which was associated with fewer high endothelial venule cells and decreased CCL21 production. Following NP-OVA immunization, NP-specific GC B cells in the dLN were decreased during pathogenic, but not attenuated, CHIKV infection. Our data suggest that pathogenic, persistent strains of CHIKV disable the development of adaptive immune responses within the dLN.

Authors

Mary K. McCarthy, Bennett J. Davenport, Glennys V. Reynoso, Erin D. Lucas, Nicholas A. May, Susan A. Elmore, Beth A. Tamburini, Heather D. Hickman, Thomas E. Morrison

×

Enhancing IgG distribution to lung mucosal tissue improves protective effect of anti–Pseudomonas aeruginosa antibodies
M. Jack Borrok, Antonio DiGiandomenico, Nurten Beyaz, Gabriela M. Marchetti, Arnita S. Barnes, Kristen J. Lekstrom, Sandrina S. Phipps, Michael P. McCarthy, Herren Wu, William F. Dall’Acqua, Ping Tsui, Ruchi Gupta
M. Jack Borrok, Antonio DiGiandomenico, Nurten Beyaz, Gabriela M. Marchetti, Arnita S. Barnes, Kristen J. Lekstrom, Sandrina S. Phipps, Michael P. McCarthy, Herren Wu, William F. Dall’Acqua, Ping Tsui, Ruchi Gupta
View: Text | PDF

Enhancing IgG distribution to lung mucosal tissue improves protective effect of anti–Pseudomonas aeruginosa antibodies

  • Text
  • PDF
Abstract

IgG antibodies are abundantly present in the vasculature but to a much lesser extent in mucosal tissues. This contrasts with antibodies of the IgA and IgM isotype that are present at high concentration in mucosal secretions due to active delivery by the polymeric Ig receptor (pIgR). IgG is the preferred isotype for therapeutic mAb development due to its long serum half-life and robust Fc-mediated effector function, and it is utilized to treat a diverse array of diseases with antigen targets located in the vasculature, serosa, and mucosa. As therapeutic IgG antibodies targeting the luminal side of mucosal tissue lack an active transport delivery mechanism, we sought to generate IgG antibodies that could be transported via pIgR, similarly to dimeric IgA and pentameric IgM. We show that an anti–Pseudomonas aeruginosa IgG fused with pIgR-binding peptides gained the ability to transcytose and be secreted via pIgR. Consistent with these results, pIgR-binding IgG antibodies exhibit enhanced localization to the bronchoalveolar space when compared with the parental IgG antibody. Furthermore, pIgR-binding mAbs maintained Fc-mediated functional activity and promoted enhanced survival compared with the parental mAb in a P. aeruginosa acute pneumonia model. Our results suggest that increasing IgG accumulation at mucosal surfaces by pIgR-mediated active transport can improve the efficacy of therapeutic mAbs that act at these sites.

Authors

M. Jack Borrok, Antonio DiGiandomenico, Nurten Beyaz, Gabriela M. Marchetti, Arnita S. Barnes, Kristen J. Lekstrom, Sandrina S. Phipps, Michael P. McCarthy, Herren Wu, William F. Dall’Acqua, Ping Tsui, Ruchi Gupta

×

Murine models of Pneumocystis infection recapitulate human primary immune disorders
Waleed Elsegeiny, Mingquan Zheng, Taylor Eddens, Richard L. Gallo, Guixiang Dai, Giraldina Trevejo-Nunez, Patricia Castillo, Kara Kracinovsky, Hillary Cleveland, William Horne, Jonathan Franks, Derek Pociask, Mark Pilarski, John F. Alcorn, Kong Chen, Jay K. Kolls
Waleed Elsegeiny, Mingquan Zheng, Taylor Eddens, Richard L. Gallo, Guixiang Dai, Giraldina Trevejo-Nunez, Patricia Castillo, Kara Kracinovsky, Hillary Cleveland, William Horne, Jonathan Franks, Derek Pociask, Mark Pilarski, John F. Alcorn, Kong Chen, Jay K. Kolls
View: Text | PDF

Murine models of Pneumocystis infection recapitulate human primary immune disorders

  • Text
  • PDF
Abstract

Despite the discovery of key pattern recognition receptors and CD4+ T cell subsets in laboratory mice, there is ongoing discussion of the value of murine models to reflect human disease. Pneumocystis is an AIDS-defining illness, in which risk of infection is inversely correlated with peripheral CD4+ T cell counts. Due to medical advances in the control of HIV, the current epidemiology of Pneumocystis infection is predominantly due to primary human immunodeficiencies and immunosuppressive therapies. To this end, we found that every human genetic immunodeficiency associated with Pneumocystis infection that has been tested in mice recapitulated susceptibility. For example, humans with a loss-of-function IL21R mutation are severely immunocompromised. We found that IL-21R, in addition to CD4+ T cell intrinsic STAT3 signaling, were required for generating protective antifungal class-switched antibody responses, as well as effector T cell–mediated protection. Furthermore, CD4+ T cell intrinsic IL-21R/STAT3 signaling was required for CD4+ T cell effector responses, including IL-22 production. Recombinant IL-22 administration to Il21r–/– mice induced the expression of a fungicidal peptide, cathelicidin antimicrobial peptide, which showed in vitro fungicidal activity. In conclusion, SPF laboratory mice faithfully replicate many aspects of human primary immunodeficiency and provide useful tools to understand the generation and nature of effector CD4+ T cell immunity.

Authors

Waleed Elsegeiny, Mingquan Zheng, Taylor Eddens, Richard L. Gallo, Guixiang Dai, Giraldina Trevejo-Nunez, Patricia Castillo, Kara Kracinovsky, Hillary Cleveland, William Horne, Jonathan Franks, Derek Pociask, Mark Pilarski, John F. Alcorn, Kong Chen, Jay K. Kolls

×

Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection
Kritika Ramani, Chetan V. Jawale, Akash H. Verma, Bianca M. Coleman, Jay K. Kolls, Partha S. Biswas
Kritika Ramani, Chetan V. Jawale, Akash H. Verma, Bianca M. Coleman, Jay K. Kolls, Partha S. Biswas
View: Text | PDF

Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection

  • Text
  • PDF
Abstract

Kidney injury is a frequent outcome in patients with disseminated Candida albicans fungal infections. IL-17 receptor (IL-17R) signaling is critical for renal protection against disseminated candidiasis, but the identity and function of IL-17–responsive cells in mediating renal defense remains an active area of debate. Using BM chimeras, we found that IL-17R signaling is required only in nonhematopoietic cells for immunity to systemic C. albicans infection. Since renal tubular epithelial cells (RTEC) are highly responsive to IL-17 in vitro, we hypothesized that RTEC might be the dominant target of IL-17 activity in the infected kidney. We generated mice with a conditional deletion of IL-17 receptor A (Il17ra) in RTEC (Il17raΔRTEC). Strikingly, Il17raΔRTEC mice showed enhanced kidney damage and early mortality following systemic infection, very similar to Il17ra–/– animals. Increased susceptibility to candidiasis in Il17raΔRTEC mice was associated with diminished activation of the renal protective Kallikrein-kinin system (KKS), resulting in reduced apoptosis of kidney-resident cells during hyphal invasion. Moreover, protection was restored by treatment with bradykinin, the major end-product of KKS activation, which was mediated dominantly via bradykinin receptor b1. These data show that IL-17R signaling in RTEC is necessary and likely sufficient for IL-17–mediated renal defense against fatal systemic C. albicans infection.

Authors

Kritika Ramani, Chetan V. Jawale, Akash H. Verma, Bianca M. Coleman, Jay K. Kolls, Partha S. Biswas

×
  • ← Previous
  • 1
  • 2
  • …
  • 26
  • 27
  • 28
  • …
  • 31
  • 32
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts