Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Infectious disease

  • 311 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 26
  • 27
  • 28
  • …
  • 31
  • 32
  • Next →
Enterovirus D68 infection induces IL-17–dependent neutrophilic airway inflammation and hyperresponsiveness
Charu Rajput, Mingyuan Han, J. Kelley Bentley, Jing Lei, Tomoko Ishikawa, Qian Wu, Joanna L. Hinde, Amy P. Callear, Terri L. Stillwell, William T. Jackson, Emily T. Martin, Marc B. Hershenson
Charu Rajput, Mingyuan Han, J. Kelley Bentley, Jing Lei, Tomoko Ishikawa, Qian Wu, Joanna L. Hinde, Amy P. Callear, Terri L. Stillwell, William T. Jackson, Emily T. Martin, Marc B. Hershenson
View: Text | PDF

Enterovirus D68 infection induces IL-17–dependent neutrophilic airway inflammation and hyperresponsiveness

  • Text
  • PDF
Abstract

Enterovirus D68 (EV-D68) shares biologic features with rhinovirus (RV). In 2014, a nationwide outbreak of EV-D68 was associated with severe asthma-like symptoms. We sought to develop a mouse model of EV-D68 infection and determine the mechanisms underlying airway disease. BALB/c mice were inoculated intranasally with EV-D68 (2014 isolate), RV-A1B, or sham, alone or in combination with anti–IL-17A or house dust mite (HDM) treatment. Like RV-A1B, lung EV-D68 viral RNA peaked 12 hours after infection. EV-D68 induced airway inflammation, expression of cytokines (TNF-α, IL-6, IL-12b, IL-17A, CXCL1, CXCL2, CXCL10, and CCL2), and airway hyperresponsiveness, which were suppressed by anti–IL-17A antibody. Neutrophilic inflammation and airway responsiveness were significantly higher after EV-D68 compared with RV-A1B infection. Flow cytometry showed increased lineage–, NKp46–, RORγt+ IL-17+ILC3s and γδ T cells in the lungs of EV-D68–treated mice compared with those in RV-treated mice. EV-D68 infection of HDM-exposed mice induced additive or synergistic increases in BAL neutrophils and eosinophils and expression of IL-17, CCL11, IL-5, and Muc5AC. Finally, patients from the 2014 epidemic period with EV-D68 showed significantly higher nasopharyngeal IL-17 mRNA levels compared with patients with RV-A infection. EV-D68 infection induces IL-17–dependent airway inflammation and hyperresponsiveness, which is greater than that generated by RV-A1B, consistent with the clinical picture of severe asthma-like symptoms.

Authors

Charu Rajput, Mingyuan Han, J. Kelley Bentley, Jing Lei, Tomoko Ishikawa, Qian Wu, Joanna L. Hinde, Amy P. Callear, Terri L. Stillwell, William T. Jackson, Emily T. Martin, Marc B. Hershenson

×

Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival
Charles E. McCall, Manal Zabalawi, Tiefu Liu, Ayana Martin, David L. Long, Nancy L. Buechler, Rob J. W. Arts, Mihai Netea, Barbara K. Yoza, Peter W. Stacpoole, Vidula Vachharajani
Charles E. McCall, Manal Zabalawi, Tiefu Liu, Ayana Martin, David L. Long, Nancy L. Buechler, Rob J. W. Arts, Mihai Netea, Barbara K. Yoza, Peter W. Stacpoole, Vidula Vachharajani
View: Text | PDF

Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival

  • Text
  • PDF
Abstract

Limited understanding of the mechanisms responsible for life-threatening organ and immune failure hampers scientists’ ability to design sepsis treatments. Pyruvate dehydrogenase kinase 1 (PDK1) is persistently expressed in immune-tolerant monocytes of septic mice and humans and deactivates mitochondrial pyruvate dehydrogenase complex (PDC), the gate-keeping enzyme for glucose oxidation. Here, we show that targeting PDK with its prototypic inhibitor dichloroacetate (DCA) reactivates PDC; increases mitochondrial oxidative bioenergetics in isolated hepatocytes and splenocytes; promotes vascular, immune, and organ homeostasis; accelerates bacterial clearance; and increases survival. These results indicate that the PDC/PDK axis is a druggable mitochondrial target for promoting immunometabolic and organ homeostasis during sepsis.

Authors

Charles E. McCall, Manal Zabalawi, Tiefu Liu, Ayana Martin, David L. Long, Nancy L. Buechler, Rob J. W. Arts, Mihai Netea, Barbara K. Yoza, Peter W. Stacpoole, Vidula Vachharajani

×

Chikungunya virus impairs draining lymph node function by inhibiting HEV-mediated lymphocyte recruitment
Mary K. McCarthy, Bennett J. Davenport, Glennys V. Reynoso, Erin D. Lucas, Nicholas A. May, Susan A. Elmore, Beth A. Tamburini, Heather D. Hickman, Thomas E. Morrison
Mary K. McCarthy, Bennett J. Davenport, Glennys V. Reynoso, Erin D. Lucas, Nicholas A. May, Susan A. Elmore, Beth A. Tamburini, Heather D. Hickman, Thomas E. Morrison
View: Text | PDF

Chikungunya virus impairs draining lymph node function by inhibiting HEV-mediated lymphocyte recruitment

  • Text
  • PDF
Abstract

Chikungunya virus (CHIKV) causes acute and chronic rheumatologic disease. Pathogenic CHIKV strains persist in joints of immunocompetent mice, while the attenuated CHIKV strain 181/25 is cleared by adaptive immunity. We analyzed the draining lymph node (dLN) to define events in lymphoid tissue that may contribute to CHIKV persistence or clearance. Acute 181/25 infection resulted in dLN enlargement and germinal center (GC) formation, while the dLN of mice infected with pathogenic CHIKV became highly disorganized and depleted of lymphocytes. Using CHIKV strains encoding ovalbumin-specific TCR epitopes, we found that lymphocyte depletion was not due to impaired lymphocyte proliferation. Instead, the accumulation of naive lymphocytes transferred from the vasculature to the dLN was reduced, which was associated with fewer high endothelial venule cells and decreased CCL21 production. Following NP-OVA immunization, NP-specific GC B cells in the dLN were decreased during pathogenic, but not attenuated, CHIKV infection. Our data suggest that pathogenic, persistent strains of CHIKV disable the development of adaptive immune responses within the dLN.

Authors

Mary K. McCarthy, Bennett J. Davenport, Glennys V. Reynoso, Erin D. Lucas, Nicholas A. May, Susan A. Elmore, Beth A. Tamburini, Heather D. Hickman, Thomas E. Morrison

×

Enhancing IgG distribution to lung mucosal tissue improves protective effect of anti–Pseudomonas aeruginosa antibodies
M. Jack Borrok, Antonio DiGiandomenico, Nurten Beyaz, Gabriela M. Marchetti, Arnita S. Barnes, Kristen J. Lekstrom, Sandrina S. Phipps, Michael P. McCarthy, Herren Wu, William F. Dall’Acqua, Ping Tsui, Ruchi Gupta
M. Jack Borrok, Antonio DiGiandomenico, Nurten Beyaz, Gabriela M. Marchetti, Arnita S. Barnes, Kristen J. Lekstrom, Sandrina S. Phipps, Michael P. McCarthy, Herren Wu, William F. Dall’Acqua, Ping Tsui, Ruchi Gupta
View: Text | PDF

Enhancing IgG distribution to lung mucosal tissue improves protective effect of anti–Pseudomonas aeruginosa antibodies

  • Text
  • PDF
Abstract

IgG antibodies are abundantly present in the vasculature but to a much lesser extent in mucosal tissues. This contrasts with antibodies of the IgA and IgM isotype that are present at high concentration in mucosal secretions due to active delivery by the polymeric Ig receptor (pIgR). IgG is the preferred isotype for therapeutic mAb development due to its long serum half-life and robust Fc-mediated effector function, and it is utilized to treat a diverse array of diseases with antigen targets located in the vasculature, serosa, and mucosa. As therapeutic IgG antibodies targeting the luminal side of mucosal tissue lack an active transport delivery mechanism, we sought to generate IgG antibodies that could be transported via pIgR, similarly to dimeric IgA and pentameric IgM. We show that an anti–Pseudomonas aeruginosa IgG fused with pIgR-binding peptides gained the ability to transcytose and be secreted via pIgR. Consistent with these results, pIgR-binding IgG antibodies exhibit enhanced localization to the bronchoalveolar space when compared with the parental IgG antibody. Furthermore, pIgR-binding mAbs maintained Fc-mediated functional activity and promoted enhanced survival compared with the parental mAb in a P. aeruginosa acute pneumonia model. Our results suggest that increasing IgG accumulation at mucosal surfaces by pIgR-mediated active transport can improve the efficacy of therapeutic mAbs that act at these sites.

Authors

M. Jack Borrok, Antonio DiGiandomenico, Nurten Beyaz, Gabriela M. Marchetti, Arnita S. Barnes, Kristen J. Lekstrom, Sandrina S. Phipps, Michael P. McCarthy, Herren Wu, William F. Dall’Acqua, Ping Tsui, Ruchi Gupta

×

Murine models of Pneumocystis infection recapitulate human primary immune disorders
Waleed Elsegeiny, Mingquan Zheng, Taylor Eddens, Richard L. Gallo, Guixiang Dai, Giraldina Trevejo-Nunez, Patricia Castillo, Kara Kracinovsky, Hillary Cleveland, William Horne, Jonathan Franks, Derek Pociask, Mark Pilarski, John F. Alcorn, Kong Chen, Jay K. Kolls
Waleed Elsegeiny, Mingquan Zheng, Taylor Eddens, Richard L. Gallo, Guixiang Dai, Giraldina Trevejo-Nunez, Patricia Castillo, Kara Kracinovsky, Hillary Cleveland, William Horne, Jonathan Franks, Derek Pociask, Mark Pilarski, John F. Alcorn, Kong Chen, Jay K. Kolls
View: Text | PDF

Murine models of Pneumocystis infection recapitulate human primary immune disorders

  • Text
  • PDF
Abstract

Despite the discovery of key pattern recognition receptors and CD4+ T cell subsets in laboratory mice, there is ongoing discussion of the value of murine models to reflect human disease. Pneumocystis is an AIDS-defining illness, in which risk of infection is inversely correlated with peripheral CD4+ T cell counts. Due to medical advances in the control of HIV, the current epidemiology of Pneumocystis infection is predominantly due to primary human immunodeficiencies and immunosuppressive therapies. To this end, we found that every human genetic immunodeficiency associated with Pneumocystis infection that has been tested in mice recapitulated susceptibility. For example, humans with a loss-of-function IL21R mutation are severely immunocompromised. We found that IL-21R, in addition to CD4+ T cell intrinsic STAT3 signaling, were required for generating protective antifungal class-switched antibody responses, as well as effector T cell–mediated protection. Furthermore, CD4+ T cell intrinsic IL-21R/STAT3 signaling was required for CD4+ T cell effector responses, including IL-22 production. Recombinant IL-22 administration to Il21r–/– mice induced the expression of a fungicidal peptide, cathelicidin antimicrobial peptide, which showed in vitro fungicidal activity. In conclusion, SPF laboratory mice faithfully replicate many aspects of human primary immunodeficiency and provide useful tools to understand the generation and nature of effector CD4+ T cell immunity.

Authors

Waleed Elsegeiny, Mingquan Zheng, Taylor Eddens, Richard L. Gallo, Guixiang Dai, Giraldina Trevejo-Nunez, Patricia Castillo, Kara Kracinovsky, Hillary Cleveland, William Horne, Jonathan Franks, Derek Pociask, Mark Pilarski, John F. Alcorn, Kong Chen, Jay K. Kolls

×

Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection
Kritika Ramani, Chetan V. Jawale, Akash H. Verma, Bianca M. Coleman, Jay K. Kolls, Partha S. Biswas
Kritika Ramani, Chetan V. Jawale, Akash H. Verma, Bianca M. Coleman, Jay K. Kolls, Partha S. Biswas
View: Text | PDF

Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection

  • Text
  • PDF
Abstract

Kidney injury is a frequent outcome in patients with disseminated Candida albicans fungal infections. IL-17 receptor (IL-17R) signaling is critical for renal protection against disseminated candidiasis, but the identity and function of IL-17–responsive cells in mediating renal defense remains an active area of debate. Using BM chimeras, we found that IL-17R signaling is required only in nonhematopoietic cells for immunity to systemic C. albicans infection. Since renal tubular epithelial cells (RTEC) are highly responsive to IL-17 in vitro, we hypothesized that RTEC might be the dominant target of IL-17 activity in the infected kidney. We generated mice with a conditional deletion of IL-17 receptor A (Il17ra) in RTEC (Il17raΔRTEC). Strikingly, Il17raΔRTEC mice showed enhanced kidney damage and early mortality following systemic infection, very similar to Il17ra–/– animals. Increased susceptibility to candidiasis in Il17raΔRTEC mice was associated with diminished activation of the renal protective Kallikrein-kinin system (KKS), resulting in reduced apoptosis of kidney-resident cells during hyphal invasion. Moreover, protection was restored by treatment with bradykinin, the major end-product of KKS activation, which was mediated dominantly via bradykinin receptor b1. These data show that IL-17R signaling in RTEC is necessary and likely sufficient for IL-17–mediated renal defense against fatal systemic C. albicans infection.

Authors

Kritika Ramani, Chetan V. Jawale, Akash H. Verma, Bianca M. Coleman, Jay K. Kolls, Partha S. Biswas

×

Neutrophils are essential for induction of vaccine-like effects by antiviral monoclonal antibody immunotherapies
Mar Naranjo-Gomez, Jennifer Lambour, Marc Piechaczyk, Mireia Pelegrin
Mar Naranjo-Gomez, Jennifer Lambour, Marc Piechaczyk, Mireia Pelegrin
View: Text | PDF

Neutrophils are essential for induction of vaccine-like effects by antiviral monoclonal antibody immunotherapies

  • Text
  • PDF
Abstract

Using a mouse retroviral model, we have shown that mAb-based immunotherapy can induce life-long endogenous protective immunity (vaccine-like effects). This observation has potentially important consequences for treating life-threatening human viral infections. Here, we investigated the role of neutrophils in this effect. Neutrophils are innate immunity effector cells with well-established microbe-killing activities that are rapidly mobilized upon infection. They are also emerging as orchestrators of innate and adaptive immunities. However, their immunomodulatory activity during antiviral mAb immunotherapies has never been studied. Our data reveal that neutrophils have an essential role in immunotherapy-induced immune protection of infected mice. Unexpectedly, neutrophils have a limited effect in controlling viral propagation upon passive immunotherapy administration, which is mostly mediated by NK cells. Instead, neutrophils operate as essential inducers of a potent host humoral antiviral response. Thus, neutrophils play an unexpected key role in protective immunity induction by antiviral mAbs. Our work opens approaches to improve antiviral immunotherapies, as it suggests that preserving neutrophil functions and counts might be required for achieving mAb-induced protective immunity.

Authors

Mar Naranjo-Gomez, Jennifer Lambour, Marc Piechaczyk, Mireia Pelegrin

×

CXCL10 stabilizes T cell–brain endothelial cell adhesion leading to the induction of cerebral malaria
Elizabeth W. Sorensen, Jeffrey Lian, Aleksandra J. Ozga, Yoshishige Miyabe, Sophina W. Ji, Shannon K. Bromley, Thorsten R. Mempel, Andrew D. Luster
Elizabeth W. Sorensen, Jeffrey Lian, Aleksandra J. Ozga, Yoshishige Miyabe, Sophina W. Ji, Shannon K. Bromley, Thorsten R. Mempel, Andrew D. Luster
View: Text | PDF

CXCL10 stabilizes T cell–brain endothelial cell adhesion leading to the induction of cerebral malaria

  • Text
  • PDF
Abstract

Malaria remains one of the world’s most significant human infectious diseases and cerebral malaria (CM) is its most deadly complication. CM pathogenesis remains incompletely understood, hindering the development of therapeutics to prevent this lethal complication. Elevated levels of the chemokine CXCL10 are a biomarker for CM, and CXCL10 and its receptor CXCR3 are required for experimental CM (ECM) in mice, but their role has remained unclear. Using multiphoton intravital microscopy, CXCR3 receptor– and ligand–deficient mice and bone marrow chimeric mice, we demonstrate a key role for endothelial cell–produced CXCL10 in inducing the firm adhesion of T cells and preventing their cell detachment from the brain vasculature. Using a CXCL9 and CXCL10 dual-CXCR3-ligand reporter mouse, we found that CXCL10 was strongly induced in the brain endothelium as early as 4 days after infection, while CXCL9 and CXCL10 expression was found in inflammatory monocytes and monocyte-derived DCs within the blood vasculature on day 8. The induction of both CXCL9 and CXCL10 was completely dependent on IFN-γ receptor signaling. These data demonstrate that IFN-γ–induced, endothelium-derived CXCL10 plays a critical role in mediating the T cell–endothelial cell adhesive events that initiate the inflammatory cascade that injures the endothelium and induces the development of ECM.

Authors

Elizabeth W. Sorensen, Jeffrey Lian, Aleksandra J. Ozga, Yoshishige Miyabe, Sophina W. Ji, Shannon K. Bromley, Thorsten R. Mempel, Andrew D. Luster

×

Exosomal Tat protein activates latent HIV-1 in primary, resting CD4+ T lymphocytes
Xiaoli Tang, Huafei Lu, Mark Dooner, Stacey Chapman, Peter J. Quesenberry, Bharat Ramratnam
Xiaoli Tang, Huafei Lu, Mark Dooner, Stacey Chapman, Peter J. Quesenberry, Bharat Ramratnam
View: Text | PDF

Exosomal Tat protein activates latent HIV-1 in primary, resting CD4+ T lymphocytes

  • Text
  • PDF
Abstract

Replication competent HIV-1 persists in a subpopulation of CD4+ T lymphocytes despite prolonged antiretroviral treatment. This residual reservoir of infected cells harbors transcriptionally silent provirus capable of reigniting productive infection upon discontinuation of antiretroviral therapy. Certain classes of drugs can activate latent virus but not at levels that lead to reductions in HIV-1 reservoir size in vivo. Here, we show the utility of CD4+ receptor targeting exosomes as an HIV-1 latency reversal agent (LRA). We engineered human cellular exosomes to express HIV-1 Tat, a protein that is a potent transactivator of viral transcription. Preparations of exosomal Tat-activated HIV-1 in primary, resting CD4+ T lymphocytes isolated from antiretroviral-treated individuals with prolonged periods of viral suppression and led to the production of replication competent HIV-1. Furthermore, exosomal Tat increased the potency of selected LRA by over 30-fold in terms of HIV-1 mRNA expression, thereby establishing it as a potentially new class of biologic product with possible combinatorial utility in targeting latent HIV-1.

Authors

Xiaoli Tang, Huafei Lu, Mark Dooner, Stacey Chapman, Peter J. Quesenberry, Bharat Ramratnam

×

The homozygous CX3CR1-M280 mutation impairs human monocyte survival
Amanda L. Collar, Muthulekha Swamydas, Morgan O’Hayre, Md Sanaullah Sajib, Kevin W. Hoffman, Satya P. Singh, Ahmad Mourad, Melissa D. Johnson, Elise M.N. Ferre, Joshua M. Farber, Jean K. Lim, Constantinos M. Mikelis, J. Silvio Gutkind, Michail S. Lionakis
Amanda L. Collar, Muthulekha Swamydas, Morgan O’Hayre, Md Sanaullah Sajib, Kevin W. Hoffman, Satya P. Singh, Ahmad Mourad, Melissa D. Johnson, Elise M.N. Ferre, Joshua M. Farber, Jean K. Lim, Constantinos M. Mikelis, J. Silvio Gutkind, Michail S. Lionakis
View: Text | PDF

The homozygous CX3CR1-M280 mutation impairs human monocyte survival

  • Text
  • PDF
Abstract

Several reports have demonstrated that mouse Cx3cr1 signaling promotes monocyte/macrophage survival. In agreement, we previously found that, in a mouse model of systemic candidiasis, genetic deficiency of Cx3cr1 resulted in increased mortality and impaired tissue fungal clearance associated with decreased macrophage survival. We translated this finding by showing that the dysfunctional CX3CR1 variant CX3CR1-M280 was associated with increased risk and worse outcome of human systemic candidiasis. However, the impact of this mutation on human monocyte/macrophage survival is poorly understood. Herein, we hypothesized that CX3CR1-M280 impairs human monocyte survival. We identified WT (CX3CR1-WT/WT), CX3CR1-WT/M280 heterozygous, and CX3CR1-M280/M280 homozygous healthy donors of European descent, and we show that CX3CL1 rescues serum starvation–induced cell death in CX3CR1-WT/WT and CX3CR1-WT/M280 but not in CX3CR1-M280/M280 monocytes. CX3CL1-induced survival of CX3CR1-WT/WT monocytes is mediated via AKT and ERK activation, which are both impaired in CX3CR1-M280/M280 monocytes, associated with decreased blood monocyte counts in CX3CR1-M280/M280 donors at steady state. Instead, CX3CR1-M280/M280 does not affect monocyte CX3CR1 surface expression or innate immune effector functions. Together, we show that homozygocity of the M280 polymorphism in CX3CR1 is a potentially novel population-based genetic factor that influences human monocyte signaling.

Authors

Amanda L. Collar, Muthulekha Swamydas, Morgan O’Hayre, Md Sanaullah Sajib, Kevin W. Hoffman, Satya P. Singh, Ahmad Mourad, Melissa D. Johnson, Elise M.N. Ferre, Joshua M. Farber, Jean K. Lim, Constantinos M. Mikelis, J. Silvio Gutkind, Michail S. Lionakis

×
  • ← Previous
  • 1
  • 2
  • …
  • 26
  • 27
  • 28
  • …
  • 31
  • 32
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts