Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival
Charles E. McCall, … , Peter W. Stacpoole, Vidula Vachharajani
Charles E. McCall, … , Peter W. Stacpoole, Vidula Vachharajani
Published August 9, 2018
Citation Information: JCI Insight. 2018;3(15):e99292. https://doi.org/10.1172/jci.insight.99292.
View: Text | PDF
Research Article Immunology Infectious disease

Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival

  • Text
  • PDF
Abstract

Limited understanding of the mechanisms responsible for life-threatening organ and immune failure hampers scientists’ ability to design sepsis treatments. Pyruvate dehydrogenase kinase 1 (PDK1) is persistently expressed in immune-tolerant monocytes of septic mice and humans and deactivates mitochondrial pyruvate dehydrogenase complex (PDC), the gate-keeping enzyme for glucose oxidation. Here, we show that targeting PDK with its prototypic inhibitor dichloroacetate (DCA) reactivates PDC; increases mitochondrial oxidative bioenergetics in isolated hepatocytes and splenocytes; promotes vascular, immune, and organ homeostasis; accelerates bacterial clearance; and increases survival. These results indicate that the PDC/PDK axis is a druggable mitochondrial target for promoting immunometabolic and organ homeostasis during sepsis.

Authors

Charles E. McCall, Manal Zabalawi, Tiefu Liu, Ayana Martin, David L. Long, Nancy L. Buechler, Rob J. W. Arts, Mihai Netea, Barbara K. Yoza, Peter W. Stacpoole, Vidula Vachharajani

×

Figure 1

Dichloroacetate (DCA) treatment activates pyruvate dehydrogenase complex (PDC).

Options: View larger image (or click on image) Download as PowerPoint
Dichloroacetate (DCA) treatment activates pyruvate dehydrogenase complex...
(A and B) DCA represses phosphorylation at deactivating serine sites on PDC. Homogenized liver tissue obtained from SHAM, cecal ligation and puncture (CLP)+ DCA, and CLP+ vehicle was probed with a mixture of anti–phospho-S232 and S300 antibodies to PDC E1α rate-limiting component for acetyl Co-A generation using Western blot. Anti–phospho-S232 and S300 on PDC in the CLP+ DCA group were significantly reduced vs. CLP+ vehicle. Western blot signals were quantified using ImageJ. Unpaired t test determined significance. *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts