Go to The Journal of Clinical Investigation
Insight white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All...
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

Insight white on transparent small

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Transfers
  • Current issue
  • Past issues
  • By specialty
  • Contact
  • Recently published
  • Technical Advances
  • Clinical Medicine
  • Editorials
  • Top read articles

Immunology

  • 192 Articles
  • 0 Posts
  • ←
  • 1
  • 2
  • 3
  • …
  • 19
  • 20
  • →
Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in juvenile diabetes
Ciriana Orabona, … , Paolo Puccetti, Ursula Grohmann
Ciriana Orabona, … , Paolo Puccetti, Ursula Grohmann
Published March 22, 2018
Citation Information: JCI Insight. 2018;3(6):e96244. doi:10.1172/jci.insight.96244.
View: Text | PDF

Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in juvenile diabetes

  • Text
  • PDF
Abstract

A defect in indoleamine 2,3-dioxygenase 1 (IDO1), which is responsible for immunoregulatory tryptophan catabolism, impairs development of immune tolerance to autoantigens in NOD mice, a model for human autoimmune type 1 diabetes (T1D). Whether IDO1 function is also defective in T1D is still unknown. We investigated IDO1 function in sera and peripheral blood mononuclear cells (PBMCs) from children with T1D and matched controls. These children were further included in a discovery study to identify SNPs in IDO1 that might modify the risk of T1D. T1D in children was characterized by a remarkable defect in IDO1 function. A common haplotype, associated with dysfunctional IDO1, increased the risk of developing T1D in the discovery and also confirmation studies. In T1D patients sharing such a common IDO1 haplotype, incubation of PBMCs in vitro with tocilizumab (TCZ) — an IL-6 receptor blocker — would, however, rescue IDO1 activity. In an experimental setting with diabetic NOD mice, TCZ was found to restore normoglycemia via IDO1-dependent mechanisms. Thus, functional SNPs of IDO1 are associated with defective tryptophan catabolism in human T1D, and maneuvers aimed at restoring IDO1 function would be therapeutically effective in at least a subgroup of T1D pediatric patients.

Authors

Ciriana Orabona, Giada Mondanelli, Maria T. Pallotta, Agostinho Carvalho, Elisa Albini, Francesca Fallarino, Carmine Vacca, Claudia Volpi, Maria L. Belladonna, Maria G. Berioli, Giulia Ceccarini, Susanna M.R. Esposito, Raffaella Scattoni, Alberto Verrotti, Alessandra Ferretti, Giovanni De Giorgi, Sonia Toni, Marco Cappa, Maria C. Matteoli, Roberta Bianchi, Davide Matino, Alberta Iacono, Matteo Puccetti, Cristina Cunha, Silvio Bicciato, Cinzia Antognelli, Vincenzo N. Talesa, Lucienne Chatenoud, Dietmar Fuchs, Luc Pilotte, Benoît Van den Eynde, Manuel C. Lemos, Luigina Romani, Paolo Puccetti, Ursula Grohmann

×

IL-1 signaling mediates intrauterine inflammation and chorio-decidua neutrophil recruitment and activation
Pietro Presicce, … , Alan H. Jobe, Suhas G. Kallapur
Pietro Presicce, … , Alan H. Jobe, Suhas G. Kallapur
Published March 22, 2018
Citation Information: JCI Insight. 2018;3(6):e98306. doi:10.1172/jci.insight.98306.
View: Text | PDF

IL-1 signaling mediates intrauterine inflammation and chorio-decidua neutrophil recruitment and activation

  • Text
  • PDF
Abstract

Neutrophil infiltration of the chorioamnion-decidua tissue at the maternal-fetal interface (chorioamnionitis) is a leading cause of prematurity, fetal inflammation, and perinatal mortality. We induced chorioamnionitis in preterm rhesus macaques by intraamniotic injection of LPS. Here, we show that, during chorioamnionitis, the amnion upregulated phospho-IRAK1–expressed neutrophil chemoattractants CXCL8 and CSF3 in an IL-1–dependent manner. IL-1R blockade decreased chorio-decidua neutrophil accumulation, neutrophil activation, and IL-6 and prostaglandin E2 concentrations in the amniotic fluid. Neutrophils accumulating in the chorio-decidua had increased survival mediated by BCL2A1, and IL-1R blockade also decreased BCL2A1+ chorio-decidua neutrophils. Readouts for inflammation in a cohort of women with preterm delivery and chorioamnionitis were similar to findings in the rhesus macaques. IL-1 is a potential therapeutic target for chorioamnionitis and associated morbidities.

Authors

Pietro Presicce, Chan-Wook Park, Paranthaman Senthamaraikannan, Sandip Bhattacharyya, Courtney Jackson, Fansheng Kong, Cesar M. Rueda, Emily DeFranco, Lisa A. Miller, David A. Hildeman, Nathan Salomonis, Claire A. Chougnet, Alan H. Jobe, Suhas G. Kallapur

×

Nlrp3-dependent IL-1β inhibits CD103+ dendritic cell differentiation in the gut
Rachel Mak’Anyengo, … , Max Schnurr, Christian Bauer
Rachel Mak’Anyengo, … , Max Schnurr, Christian Bauer
Published March 8, 2018
Citation Information: JCI Insight. 2018;3(5):e96322. doi:10.1172/jci.insight.96322.
View: Text | PDF

Nlrp3-dependent IL-1β inhibits CD103+ dendritic cell differentiation in the gut

  • Text
  • PDF
Abstract

Inflammatory bowel disease (IBD) is associated with enhanced levels of the IL-1 family cytokines IL-1β and IL-18, which are activated by the Nlrp3 inflammasome. Here, we investigated the role of inflammasome-driven cytokine release on T cell polarization and DC differentiation in steady state and T cell transfer colitis. In vitro and in vivo data showed that IL-1β induces Th17 polarization and increases GM‑CSF production by T cells. Reduced IL-1β levels in Nlrp3–/– mice correlated with enhanced FLT3L levels and increased frequency of tolerogenic CD103+ DC. In the T cell transfer colitis model, Nlrp3 deficiency resulted in lower IL‑1β levels, reduced Th17 immunity, and less severe colitis. Unaltered IL-18 levels in both mouse strains pointed toward Nlrp3-independent processing. Importantly, cohousing revealed that the gut microbiome had no impact on the observed Nlrp3–/– phenotype. This study demonstrates that NLRP3 acts as a molecular switch of intestinal homeostasis by shifting local immune cells toward an inflammatory phenotype via IL-1β.

Authors

Rachel Mak’Anyengo, Peter Duewell, Cornelia Reichl, Christine Hörth, Hans‑Anton Lehr, Sandra Fischer, Thomas Clavel, Gerald Denk, Simon Hohenester, Sebastian Kobold, Stefan Endres, Max Schnurr, Christian Bauer

×

Impaired TLR9 responses in B cells from patients with systemic lupus erythematosus
Vincent Gies, … , Eric Meffre, Anne-Sophie Korganow
Vincent Gies, … , Eric Meffre, Anne-Sophie Korganow
Published March 8, 2018
Citation Information: JCI Insight. 2018;3(5):e96795. doi:10.1172/jci.insight.96795.
View: Text | PDF

Impaired TLR9 responses in B cells from patients with systemic lupus erythematosus

  • Text
  • PDF
Abstract

B cells play a central role in systemic lupus erythematosus (SLE) pathophysiology but dysregulated pathways leading to a break in B cell tolerance remain unclear. Since Toll-like receptor 9 (TLR9) favors the elimination of autoreactive B cells in the periphery, we assessed TLR9 function in SLE by analyzing the responses of B cells and plasmacytoid dendritic cells (pDCs) isolated from healthy donors and patients after stimulation with CpG, a TLR9 agonist. We found that SLE B cells from patients without hydroxychloroquine treatment displayed defective in vitro TLR9 responses, as illustrated by the impaired upregulation of B cell activation molecules and the diminished production of various cytokines including antiinflammatory IL-10. In agreement with CD19 controlling TLR9 responses in B cells, decreased expression of the CD19/CD21 complex on SLE B cells was detected as early as the transitional B cell stage. In contrast, TLR7 function was preserved in SLE B cells, whereas pDCs from SLE patients properly responded to TLR9 stimulation, thereby revealing that impaired TLR9 function in SLE was restricted to B cells. We conclude that abnormal CD19 expression and TLR9 tolerogenic function in SLE B cells may contribute to the break of B cell tolerance in these patients.

Authors

Vincent Gies, Jean-Nicolas Schickel, Sophie Jung, Aurélie Joublin, Salomé Glauzy, Anne-Marie Knapp, Anne Soley, Vincent Poindron, Aurélien Guffroy, Jin-Young Choi, Jacques-Eric Gottenberg, Jennifer H. Anolik, Thierry Martin, Pauline Soulas-Sprauel, Eric Meffre, Anne-Sophie Korganow

×

Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease
Pedro Santos e Sousa, … , Clare L. Bennett, Ronjon Chakraverty
Pedro Santos e Sousa, … , Clare L. Bennett, Ronjon Chakraverty
Published March 8, 2018
Citation Information: JCI Insight. 2018;3(5):e97011. doi:10.1172/jci.insight.97011.
View: Text | PDF

Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease

  • Text
  • PDF
Abstract

Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ–specific approaches to block immunopathology while avoiding global immune suppression.

Authors

Pedro Santos e Sousa, Séverine Ciré, Thomas Conlan, Laura Jardine, Claire Tkacz, Ivana R. Ferrer, Cara Lomas, Sophie Ward, Heather West, Simone Dertschnig, Sven Blobner, Terry K. Means, Stephen Henderson, Daniel H. Kaplan, Matthew Collin, Vincent Plagnol, Clare L. Bennett, Ronjon Chakraverty

×

A peripheral blood transcriptomic signature predicts autoantibody development in infants at risk of type 1 diabetes
Ahmed M. Mehdi, … , Mark Harris, Ranjeny Thomas
Ahmed M. Mehdi, … , Mark Harris, Ranjeny Thomas
Published March 8, 2018
Citation Information: JCI Insight. 2018;3(5):e98212. doi:10.1172/jci.insight.98212.
View: Text | PDF

A peripheral blood transcriptomic signature predicts autoantibody development in infants at risk of type 1 diabetes

  • Text
  • PDF
Abstract

Autoimmune-mediated destruction of pancreatic islet β cells results in type 1 diabetes (T1D). Serum islet autoantibodies usually develop in genetically susceptible individuals in early childhood before T1D onset, with multiple islet autoantibodies predicting diabetes development. However, most at-risk children remain islet-antibody negative, and no test currently identifies those likely to seroconvert. We sought a genomic signature predicting seroconversion risk by integrating longitudinal peripheral blood gene expression profiles collected in high-risk children included in the BABYDIET and DIPP cohorts, of whom 50 seroconverted. Subjects were followed for 10 years to determine time of seroconversion. Any cohort effect and the time of seroconversion were corrected to uncover genes differentially expressed (DE) in seroconverting children. Gene expression signatures associated with seroconversion were evident during the first year of life, with 67 DE genes identified in seroconverting children relative to those remaining antibody negative. These genes contribute to T cell–, DC-, and B cell–related immune responses. Near-birth expression of ADCY9, PTCH1, MEX3B, IL15RA, ZNF714, TENM1, and PLEKHA5, along with HLA risk score predicted seroconversion (AUC 0.85). The ubiquitin-proteasome pathway linked DE genes and T1D susceptibility genes. Therefore, a gene expression signature in infancy predicts risk of seroconversion. Ubiquitination may play a mechanistic role in diabetes progression.

Authors

Ahmed M. Mehdi, Emma E. Hamilton-Williams, Alexandre Cristino, Anette Ziegler, Ezio Bonifacio, Kim-Anh Le Cao, Mark Harris, Ranjeny Thomas

×

Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial
Bruno Francois, … , Edward R. Sherwood, Richard S. Hotchkiss
Bruno Francois, … , Edward R. Sherwood, Richard S. Hotchkiss
Published March 8, 2018
Citation Information: JCI Insight. 2018;3(5):e98960. doi:10.1172/jci.insight.98960.
View: Text | PDF

Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial

  • Text
  • PDF
Abstract

BACKGROUND. A defining pathophysiologic feature of sepsis is profound apoptosis-induced death and depletion of CD4+ and CD8+ T cells. Interleukin-7 (IL-7) is an antiapoptotic common γ-chain cytokine that is essential for lymphocyte proliferation and survival. Clinical trials of IL-7 in over 390 oncologic and lymphopenic patients showed that IL-7 was safe, invariably increased CD4+ and CD8+ lymphocyte counts, and improved immunity. METHODS. We conducted a prospective, randomized, double-blind, placebo-controlled trial of recombinant human IL-7 (CYT107) in patients with septic shock and severe lymphopenia. Twenty-seven patients at academic sites in France and the United States received CYT107 or placebo for 4 weeks. Primary aims were to determine the safety of CYT107 in sepsis and its ability to reverse lymphopenia. RESULTS. CYT107 was well tolerated without evidence of inducing cytokine storm or worsening inflammation or organ dysfunction. CYT107 caused a 3- to 4-fold increase in absolute lymphocyte counts and in circulating CD4+ and CD8+ T cells that persisted for weeks after drug administration. CYT107 also increased T cell proliferation and activation. CONCLUSIONS. This is the first trial of an immunoadjuvant therapy targeting defects in adaptive immunity in patients with sepsis. CYT107 reversed the marked loss of CD4+ and CD8+ immune effector cells, a hallmark of sepsis and a likely key mechanism in its morbidity and mortality. CYT107 represents a potential new way forward in the treatment of patients with sepsis by restoring adaptive immunity. Such immune-based therapy should be broadly protective against diverse pathogens including multidrug resistant bacteria that preferentially target patients with impaired immunity. TRIAL REGISTRATION. Trials registered at clinicaltrials.gov: NCT02640807 and NCT02797431. FUNDING. Revimmune, NIH National Institute of General Medical Sciences GM44118.

Authors

Bruno Francois, Robin Jeannet, Thomas Daix, Andrew H. Walton, Matthew S. Shotwell, Jacqueline Unsinger, Guillaume Monneret, Thomas Rimmelé, Teresa Blood, Michel Morre, Anne Gregoire, Gail A. Mayo, Jane Blood, Scott K. Durum, Edward R. Sherwood, Richard S. Hotchkiss

×

Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12
Mireia Uribe-Herranz, … , Carl H. June, Andrea Facciabene
Mireia Uribe-Herranz, … , Carl H. June, Andrea Facciabene
Published February 22, 2018
Citation Information: JCI Insight. 2018;3(4):e94952. doi:10.1172/jci.insight.94952.
View: Text | PDF

Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12

  • Text
  • PDF
Abstract

Adoptive T cell therapy (ACT) is a promising new modality for malignancies. Here, we report that adoptive T cell efficacy in tumor-bearing mice is significantly affected by differences in the native composition of the gut microbiome or treatment with antibiotics, or by heterologous fecal transfer. Depletion of bacteria with vancomycin decreased the rate of tumor growth in mice from The Jackson Laboratory receiving ACT, whereas treatment with neomycin and metronidazole had no effect, indicating the role of specific bacteria in host response. Vancomycin treatment induced an increase in systemic CD8α+ DCs, which sustained systemic adoptively transferred antitumor T cells in an IL-12–dependent manner. In subjects undergoing allogeneic hematopoietic cell transplantation, we found that oral vancomycin also increased IL-12 levels. Collectively, our findings demonstrate an important role played by the gut microbiota in the antitumor effectiveness of ACT and suggest potentially new avenues to improve response to ACT by altering the gut microbiota.

Authors

Mireia Uribe-Herranz, Kyle Bittinger, Stavros Rafail, Sonia Guedan, Stefano Pierini, Ceylan Tanes, Alex Ganetsky, Mark A. Morgan, Saar Gill, Janos L. Tanyi, Frederic D. Bushman, Carl H. June, Andrea Facciabene

×

T cell developmental arrest in former premature infants increases risk of respiratory morbidity later in infancy
Kristin M. Scheible, … , Thomas J. Mariani, Gloria S. Pryhuber
Kristin M. Scheible, … , Thomas J. Mariani, Gloria S. Pryhuber
Published February 22, 2018
Citation Information: JCI Insight. 2018;3(4):e96724. doi:10.1172/jci.insight.96724.
View: Text | PDF

T cell developmental arrest in former premature infants increases risk of respiratory morbidity later in infancy

  • Text
  • PDF
Abstract

The inverse relationship between gestational age at birth and postviral respiratory morbidity suggests that infants born preterm (PT) may miss a critical developmental window of T cell maturation. Despite a continued increase in younger PT survivors with respiratory complications, we have limited understanding of normal human fetal T cell maturation, how ex utero development in premature infants may interrupt normal T cell development, and whether T cell development has an effect on infant outcomes. In our longitudinal cohort of 157 infants born between 23 and 42 weeks of gestation, we identified differences in T cells present at birth that were dependent on gestational age and differences in postnatal T cell development that predicted respiratory outcome at 1 year of age. We show that naive CD4+ T cells shift from a CD31–TNF-α+ bias in mid gestation to a CD31+IL-8+ predominance by term gestation. Former PT infants discharged with CD31+IL8+CD4+ T cells below a range similar to that of full-term born infants were at an over 3.5-fold higher risk for respiratory complications after NICU discharge. This study is the first to our knowledge to identify a pattern of normal functional T cell development in later gestation and to associate abnormal T cell development with health outcomes in infants.

Authors

Kristin M. Scheible, Jason Emo, Nathan Laniewski, Andrea M. Baran, Derick R. Peterson, Jeanne Holden-Wiltse, Sanjukta Bandyopadhyay, Andrew G. Straw, Heidie Huyck, John M. Ashton, Kelly Schooping Tripi, Karan Arul, Elizabeth Werner, Tanya Scalise, Deanna Maffett, Mary Caserta, Rita M. Ryan, Anne Marie Reynolds, Clement L. Ren, David J. Topham, Thomas J. Mariani, Gloria S. Pryhuber

×

Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells
Hidetoshi Tsuda, … , Anna Valujskikh, Robert L. Fairchild
Hidetoshi Tsuda, … , Anna Valujskikh, Robert L. Fairchild
Published February 22, 2018
Citation Information: JCI Insight. 2018;3(4):e96940. doi:10.1172/jci.insight.96940.
View: Text | PDF

Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells

  • Text
  • PDF
Abstract

Recipient endogenous memory T cells with donor reactivity pose an important barrier to successful transplantation and costimulatory blockade–induced graft tolerance. Longer ischemic storage times prior to organ transplantation increase early posttransplant inflammation and negatively impact early graft function and long-term graft outcome. Little is known about the mechanisms enhancing endogenous memory T cell activation to mediate tissue injury within the increased inflammatory environment of allografts subjected to prolonged cold ischemic storage (CIS). Endogenous memory CD4+ and CD8+ T cell activation is markedly increased within complete MHC-mismatched cardiac allografts subjected to prolonged versus minimal CIS, and the memory CD8+ T cells directly mediate CTLA-4Ig–resistant allograft rejection. Memory CD8+ T cell activation within allografts subjected to prolonged CIS requires memory CD4+ T cell stimulation of graft DCs to produce p40 homodimers, but not IL-12 p40/p35 heterodimers. Targeting p40 abrogates memory CD8+ T cell proliferation within the allografts and their ability to mediate CTLA-4Ig–resistant allograft rejection. These findings indicate a critical role for memory CD4+ T cell–graft DC interactions to increase the intensity of endogenous memory CD8+ T cell activation needed to mediate rejection of higher-risk allografts subjected to increased CIS.

Authors

Hidetoshi Tsuda, Charles A. Su, Toshiaki Tanaka, Katayoun Ayasoufi, Booki Min, Anna Valujskikh, Robert L. Fairchild

×
  • ←
  • 1
  • 2
  • 3
  • …
  • 19
  • 20
  • →

No posts were found with this tag.

Advertisement
Follow JCI Insight: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2018 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts