Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
CD4+ T cell–innate immune crosstalk is critical during Staphylococcus aureus craniotomy infection
Gunjan Kak, Zachary Van Roy, Rachel W. Fallet, Lee E. Korshoj, Tammy Kielian
Gunjan Kak, Zachary Van Roy, Rachel W. Fallet, Lee E. Korshoj, Tammy Kielian
View: Text | PDF
Research Article Immunology Infectious disease

CD4+ T cell–innate immune crosstalk is critical during Staphylococcus aureus craniotomy infection

  • Text
  • PDF
Abstract

Access to the brain for treating neurological sequalae requires a craniotomy, which can be complicated by infection. Staphylococcus aureus accounts for half of craniotomy infections, increasing morbidity in a medically fragile patient population. T cells preferentially traffic to the brain during craniotomy infection; however, their functional importance is unknown. Using a mouse model of S. aureus craniotomy infection, CD4+ T cells were critical for bacterial containment, as treatment of WT animals with anti-CD4 exacerbated infection that was similar to phenotypes in Rag1–/– mice. Single-cell RNA-Seq (scRNA-Seq) revealed transcriptional heterogeneity in brain CD3+ infiltrates, with CD4+ cells most prominent that displayed Th1- and Th17-like characteristics, and adoptive transfer of either subset in Rag1–/– animals during early infection prevented S. aureus outgrowth. scRNA-Seq identified a robust IFN signature in several innate immune clusters, and examination of cell-to-cell interactions revealed extensive T cell crosstalk with monocytes/macrophages that was also observed in human craniotomy infection. A cooperative role for Th1 and Th17 responses was demonstrated by treatment of Ifng–/– mice with IL-17A neutralizing antibody that recapitulated phenotypes in Rag1–/– animals. Collectively, these findings implicate Th1- and Th17-mediated proinflammatory responses in shaping the innate immune landscape for S. aureus containment during craniotomy infection.

Authors

Gunjan Kak, Zachary Van Roy, Rachel W. Fallet, Lee E. Korshoj, Tammy Kielian

×

Full Text PDF

Download PDF (4.02 MB)

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts