Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
CD4+ T cell–innate immune crosstalk is critical during Staphylococcus aureus craniotomy infection
Gunjan Kak, … , Lee E. Korshoj, Tammy Kielian
Gunjan Kak, … , Lee E. Korshoj, Tammy Kielian
Published February 24, 2025
Citation Information: JCI Insight. 2025;10(4):e183327. https://doi.org/10.1172/jci.insight.183327.
View: Text | PDF
Research Article Immunology Infectious disease

CD4+ T cell–innate immune crosstalk is critical during Staphylococcus aureus craniotomy infection

  • Text
  • PDF
Abstract

Access to the brain for treating neurological sequalae requires a craniotomy, which can be complicated by infection. Staphylococcus aureus accounts for half of craniotomy infections, increasing morbidity in a medically fragile patient population. T cells preferentially traffic to the brain during craniotomy infection; however, their functional importance is unknown. Using a mouse model of S. aureus craniotomy infection, CD4+ T cells were critical for bacterial containment, as treatment of WT animals with anti-CD4 exacerbated infection that was similar to phenotypes in Rag1–/– mice. Single-cell RNA-Seq (scRNA-Seq) revealed transcriptional heterogeneity in brain CD3+ infiltrates, with CD4+ cells most prominent that displayed Th1- and Th17-like characteristics, and adoptive transfer of either subset in Rag1–/– animals during early infection prevented S. aureus outgrowth. scRNA-Seq identified a robust IFN signature in several innate immune clusters, and examination of cell-to-cell interactions revealed extensive T cell crosstalk with monocytes/macrophages that was also observed in human craniotomy infection. A cooperative role for Th1 and Th17 responses was demonstrated by treatment of Ifng–/– mice with IL-17A neutralizing antibody that recapitulated phenotypes in Rag1–/– animals. Collectively, these findings implicate Th1- and Th17-mediated proinflammatory responses in shaping the innate immune landscape for S. aureus containment during craniotomy infection.

Authors

Gunjan Kak, Zachary Van Roy, Rachel W. Fallet, Lee E. Korshoj, Tammy Kielian

×

Full Text PDF

Download PDF (4.02 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts