Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,119 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 102
  • 103
  • 104
  • …
  • 111
  • 112
  • Next →
T cell progenitor therapy–facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction
Michelle J. Smith, Dawn K. Reichenbach, Sarah L. Parker, Megan J. Riddle, Jason Mitchell, Kevin C. Osum, Mahmood Mohtashami, Heather E. Stefanski, Brian T. Fife, Avinash Bhandoola, Kristin A. Hogquist, Georg A. Holländer, Juan Carlos Zúñiga-Pflücker, Jakub Tolar, Bruce R. Blazar
Michelle J. Smith, Dawn K. Reichenbach, Sarah L. Parker, Megan J. Riddle, Jason Mitchell, Kevin C. Osum, Mahmood Mohtashami, Heather E. Stefanski, Brian T. Fife, Avinash Bhandoola, Kristin A. Hogquist, Georg A. Holländer, Juan Carlos Zúñiga-Pflücker, Jakub Tolar, Bruce R. Blazar
View: Text | PDF

T cell progenitor therapy–facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction

  • Text
  • PDF
Abstract

Infusion of in vitro–derived T cell progenitor (proT) therapy with hematopoietic stem cell transplant aids the recovery of the thymus damaged by total body irradiation. To understand the interaction between proTs and the thymic microenvironment, WT mice were lethally irradiated and given T cell–deficient (Rag1-/-) marrow with WT in vitro–generated proTs, limiting mature T cell development to infused proTs. ProTs within the host thymus led to a significant increase in thymic epithelial cells (TECs) by day 21 after transplant, increasing actively cycling TECs. Upon thymus egress (day 28), proT TEC effects were lost, suggesting that continued signaling from proTs is required to sustain TEC cycling and cellularity. Thymocytes increased significantly by day 21, followed by a significant improvement in mature T cell numbers in the periphery by day 35. This protective surge was temporary, receding by day 60. Double-negative 2 (DN2) proTs selectively increased thymocyte number, while DN3 proTs preferentially increased TECs and T cells in the spleen that persisted at day 60. These findings highlight the importance of the interaction between proTs and TECs in the proliferation and survival of TECs and that the maturation stage of proTs has unique effects on thymopoiesis and peripheral T cell recovery.

Authors

Michelle J. Smith, Dawn K. Reichenbach, Sarah L. Parker, Megan J. Riddle, Jason Mitchell, Kevin C. Osum, Mahmood Mohtashami, Heather E. Stefanski, Brian T. Fife, Avinash Bhandoola, Kristin A. Hogquist, Georg A. Holländer, Juan Carlos Zúñiga-Pflücker, Jakub Tolar, Bruce R. Blazar

×

A human PSMB11 variant affects thymoproteasome processing and CD8+ T cell production
Izumi Ohigashi, Yuki Ohte, Kazuya Setoh, Hiroshi Nakase, Akiko Maekawa, Hiroshi Kiyonari, Yoko Hamazaki, Miho Sekai, Tetsuo Sudo, Yasuharu Tabara, Hiromi Sawai, Yosuke Omae, Rika Yuliwulandari, Yasuhito Tanaka, Masashi Mizokami, Hiroshi Inoue, Masanori Kasahara, Nagahiro Minato, Katsushi Tokunaga, Keiji Tanaka, Fumihiko Matsuda, Shigeo Murata, Yousuke Takahama
Izumi Ohigashi, Yuki Ohte, Kazuya Setoh, Hiroshi Nakase, Akiko Maekawa, Hiroshi Kiyonari, Yoko Hamazaki, Miho Sekai, Tetsuo Sudo, Yasuharu Tabara, Hiromi Sawai, Yosuke Omae, Rika Yuliwulandari, Yasuhito Tanaka, Masashi Mizokami, Hiroshi Inoue, Masanori Kasahara, Nagahiro Minato, Katsushi Tokunaga, Keiji Tanaka, Fumihiko Matsuda, Shigeo Murata, Yousuke Takahama
View: Text | PDF

A human PSMB11 variant affects thymoproteasome processing and CD8+ T cell production

  • Text
  • PDF
Abstract

The Psmb11-encoded β5t subunit of the thymoproteasome, which is specifically expressed in cortical thymic epithelial cells (cTECs), is essential for the optimal positive selection of functionally competent CD8+ T cells in mice. Here, we report that a human genomic PSMB11 variation, which is detectable at an appreciable allele frequency in human populations, alters the β5t amino acid sequence that affects the processing of catalytically active β5t proteins. The introduction of this variation in the mouse genome revealed that the heterozygotes showed reduced β5t expression in cTECs and the homozygotes further exhibited reduction in the cellularity of CD8+ T cells. No severe health problems were noticed in many heterozygous and 5 homozygous human individuals. Long-term analysis of health status, particularly in the homozygotes, is expected to improve our understanding of the role of the thymoproteasome-dependent positive selection of CD8+ T cells in humans.

Authors

Izumi Ohigashi, Yuki Ohte, Kazuya Setoh, Hiroshi Nakase, Akiko Maekawa, Hiroshi Kiyonari, Yoko Hamazaki, Miho Sekai, Tetsuo Sudo, Yasuharu Tabara, Hiromi Sawai, Yosuke Omae, Rika Yuliwulandari, Yasuhito Tanaka, Masashi Mizokami, Hiroshi Inoue, Masanori Kasahara, Nagahiro Minato, Katsushi Tokunaga, Keiji Tanaka, Fumihiko Matsuda, Shigeo Murata, Yousuke Takahama

×

Lupus and proliferative nephritis are PAD4 independent in murine models
Rachael A. Gordon, Jan M. Herter, Florencia Rosetti, Allison M. Campbell, Hiroshi Nishi, Michael Kashgarian, Sheldon I. Bastacky, Anthony Marinov, Kevin M. Nickerson, Tanya N. Mayadas, Mark J. Shlomchik
Rachael A. Gordon, Jan M. Herter, Florencia Rosetti, Allison M. Campbell, Hiroshi Nishi, Michael Kashgarian, Sheldon I. Bastacky, Anthony Marinov, Kevin M. Nickerson, Tanya N. Mayadas, Mark J. Shlomchik
View: Text | PDF

Lupus and proliferative nephritis are PAD4 independent in murine models

  • Text
  • PDF
Abstract

Though recent reports suggest that neutrophil extracellular traps (NETs) are a source of antigenic nucleic acids in systemic lupus erythematosus (SLE), we recently showed that inhibition of NETs by targeting the NADPH oxidase complex via cytochrome b-245, β polypeptide (cybb) deletion exacerbated disease in the MRL.Faslpr lupus mouse model. While these data challenge the paradigm that NETs promote lupus, it is conceivable that global regulatory properties of cybb and cybb-independent NETs confound these findings. Furthermore, recent reports indicate that inhibitors of peptidyl arginine deiminase, type IV (Padi4), a distal mediator of NET formation, improve lupus in murine models. Here, to clarify the contribution of NETs to SLE, we employed a genetic approach to delete Padi4 in the MRL.Faslpr model and used a pharmacological approach to inhibit PADs in both the anti–glomerular basement membrane model of proliferative nephritis and a human-serum-transfer model of SLE. In contrast to prior inhibitor studies, we found that deletion of Padi4 did not ameliorate any aspect of nephritis, loss of tolerance, or immune activation. Pharmacological inhibition of PAD activity had no effect on end-organ damage in inducible models of glomerulonephritis. These data provide a direct challenge to the concept that NETs promote autoimmunity and target organ injury in SLE.

Authors

Rachael A. Gordon, Jan M. Herter, Florencia Rosetti, Allison M. Campbell, Hiroshi Nishi, Michael Kashgarian, Sheldon I. Bastacky, Anthony Marinov, Kevin M. Nickerson, Tanya N. Mayadas, Mark J. Shlomchik

×

Lung CD103+ dendritic cells restrain allergic airway inflammation through IL-12 production
Laura Conejero, Sofía C. Khouili, Sarai Martínez-Cano, Helena M. Izquierdo, Paola Brandi, David Sancho
Laura Conejero, Sofía C. Khouili, Sarai Martínez-Cano, Helena M. Izquierdo, Paola Brandi, David Sancho
View: Text | PDF

Lung CD103+ dendritic cells restrain allergic airway inflammation through IL-12 production

  • Text
  • PDF
Abstract

DCs are necessary and sufficient for induction of allergic airway inflammation. CD11b+ DCs direct the underlying Th2 immunity, but debate surrounds the function of CD103+ DCs in lung immunity and asthma after an allergic challenge. We challenged Batf3–/– mice, which lacked lung CD103+ DCs, with the relevant allergen house dust mite (HDM) as a model to ascertain their role in asthma. We show that acute and chronic HDM exposure leads to defective Th1 immunity in Batf3-deficient mice. In addition, chronic HDM challenge in Batf3–/– mice results in increased Th2 and Th17 immune responses and exacerbated airway inflammation. Mechanistically, Batf3 absence does not affect induction of Treg or IL-10 production by lung CD4+ T cells following acute HDM challenge. Batf3-dependent CD103+ migratory DCs are the main source of IL-12p40 in the mediastinal lymph node DC compartment in the steady state. Moreover, CD103+ DCs selectively increase their IL-12p40 production upon HDM administration. In vivo IL-12 treatment reverts exacerbated allergic airway inflammation upon chronic HDM challenge in Batf3–/– mice, restraining Th2 and Th17 responses without triggering Th1 immunity. These results suggest a protective role for lung CD103+ DCs to HDM allergic airway inflammation through the production of IL-12.

Authors

Laura Conejero, Sofía C. Khouili, Sarai Martínez-Cano, Helena M. Izquierdo, Paola Brandi, David Sancho

×

Ceramide synthesis regulates T cell activity and GVHD development
M. Hanief Sofi, Jessica Heinrichs, Mohammed Dany, Hung Nguyen, Min Dai, David Bastian, Steven Schutt, Yongxia Wu, Anusara Daenthanasanmak, Salih Gencer, Aleksandra Zivkovic, Zdzislaw Szulc, Holger Stark, Chen Liu, Ying-Jun Chang, Besim Ogretmen, Xue-Zhong Yu
M. Hanief Sofi, Jessica Heinrichs, Mohammed Dany, Hung Nguyen, Min Dai, David Bastian, Steven Schutt, Yongxia Wu, Anusara Daenthanasanmak, Salih Gencer, Aleksandra Zivkovic, Zdzislaw Szulc, Holger Stark, Chen Liu, Ying-Jun Chang, Besim Ogretmen, Xue-Zhong Yu
View: Text | PDF

Ceramide synthesis regulates T cell activity and GVHD development

  • Text
  • PDF
Abstract

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy for a variety of hematologic malignances, yet its efficacy is impeded by the development of graft-versus-host disease (GVHD). GVHD is characterized by activation, expansion, cytokine production, and migration of alloreactive donor T cells. Hence, strategies to limit GVHD are highly desirable. Ceramides are known to contribute to inflammation and autoimmunity. However, their involvement in T-cell responses to alloantigens is undefined. In the current study, we specifically characterized the role of ceramide synthase 6 (CerS6) after allo-HCT using genetic and pharmacologic approaches. We found that CerS6 was required for optimal T cell activation, proliferation, and cytokine production in response to alloantigen and for subsequent induction of GVHD. However, CerS6 was partially dispensable for the T cell–mediated antileukemia effect. At the molecular level, CerS6 was required for efficient TCR signal transduction, including tyrosine phosphorylation, ZAP-70 activation, and PKCθ/TCR colocalization. Impaired generation of C16-ceramide was responsible for diminished allogeneic T cell responses. Furthermore, targeting CerS6 using a specific inhibitor significantly reduced T cell activation in mouse and human T cells in vitro. Our study provides a rationale for targeting CerS6 to control GVHD, which would enhance the efficacy of allo-HCT as an immunotherapy for hematologic malignancies in the clinic.

Authors

M. Hanief Sofi, Jessica Heinrichs, Mohammed Dany, Hung Nguyen, Min Dai, David Bastian, Steven Schutt, Yongxia Wu, Anusara Daenthanasanmak, Salih Gencer, Aleksandra Zivkovic, Zdzislaw Szulc, Holger Stark, Chen Liu, Ying-Jun Chang, Besim Ogretmen, Xue-Zhong Yu

×

Bilirubin suppresses Th17 immunity in colitis by upregulating CD39
Maria Serena Longhi, Marta Vuerich, Alireza Kalbasi, Jessica E. Kenison, Ada Yeste, Eva Csizmadia, Byron Vaughn, Linda Feldbrugge, Shuji Mitshuhashi, Barbara Wegiel, Leo Otterbein, Alan Moss, Francisco J. Quintana, Simon C. Robson
Maria Serena Longhi, Marta Vuerich, Alireza Kalbasi, Jessica E. Kenison, Ada Yeste, Eva Csizmadia, Byron Vaughn, Linda Feldbrugge, Shuji Mitshuhashi, Barbara Wegiel, Leo Otterbein, Alan Moss, Francisco J. Quintana, Simon C. Robson
View: Text | PDF

Bilirubin suppresses Th17 immunity in colitis by upregulating CD39

  • Text
  • PDF
Abstract

Unconjugated bilirubin (UCB), a product of heme oxidation, has known immunosuppressant properties but the molecular mechanisms, other than antioxidant effects, remain largely unexplored. We note that UCB modulates T helper type 17 (Th17) immune responses, in a manner dependent upon heightened expression of CD39 ectonucleotidase. UCB has protective effects in experimental colitis, where it enhances recovery after injury and preferentially boosts IL-10 production by colonic intraepithelial CD4+ cells. In vitro, UCB confers immunoregulatory properties on human control Th17 cells, as reflected by increased levels of FOXP3 and CD39 with heightened cellular suppressor ability. Upregulation of CD39 by Th17 cells is dependent upon ligation of the aryl hydrocarbon receptor (AHR) by UCB. Genetic deletion of CD39, as in Entpd1–/– mice, or dysfunction of AHR, as in Ahrd mice, abrogates these UCB salutary effects in experimental colitis. However, in inflammatory bowel disease (IBD) samples, UCB fails to confer substantive immunosuppressive properties upon Th17 cells, because of decreased AHR levels under the conditions tested in vitro. Immunosuppressive effects of UCB are mediated by AHR resulting in CD39 upregulation by Th17. Boosting downstream effects of AHR via UCB or enhancing CD39-mediated ectoenzymatic activity might provide therapeutic options to address development of Th17 dysfunction in IBD.

Authors

Maria Serena Longhi, Marta Vuerich, Alireza Kalbasi, Jessica E. Kenison, Ada Yeste, Eva Csizmadia, Byron Vaughn, Linda Feldbrugge, Shuji Mitshuhashi, Barbara Wegiel, Leo Otterbein, Alan Moss, Francisco J. Quintana, Simon C. Robson

×

C3d regulates immune checkpoint blockade and enhances antitumor immunity
Jeffrey L. Platt, Inês Silva, Samuel J. Balin, Adam R. Lefferts, Evan Farkash, Ted M. Ross, Michael C. Carroll, Marilia Cascalho
Jeffrey L. Platt, Inês Silva, Samuel J. Balin, Adam R. Lefferts, Evan Farkash, Ted M. Ross, Michael C. Carroll, Marilia Cascalho
View: Text | PDF

C3d regulates immune checkpoint blockade and enhances antitumor immunity

  • Text
  • PDF
Abstract

Despite expression of immunogenic polypeptides, tumors escape immune surveillance by engaging T cell checkpoint regulators and expanding Tregs, among other mechanisms. What orchestrates these controls is unknown. We report that free C3d, a fragment of the third component of complement, inside tumor cells — or associated with irradiated tumor cells and unattached to antigen — recruits, accelerates, and amplifies antitumor T cell responses, allowing immunity to reverse or even to prevent tumor growth. C3d enhances antitumor immunity independently of B cells, NK cells, or antibodies, but it does so by increasing tumor infiltrating CD8+ lymphocytes, by depleting Tregs, and by suppressing expression of programmed cell death protein 1 (PD-1) by T cells. These properties of C3d appear specific for the tumor and dependent on complement receptor 2, and they incur no obvious systemic toxicity. The heretofore unrecognized properties of free C3d suggest that protein might determine the effectiveness of immune surveillance and that increasing availability of the protein might prove advantageous in the treatment or prevention of cancer and premalignant conditions.

Authors

Jeffrey L. Platt, Inês Silva, Samuel J. Balin, Adam R. Lefferts, Evan Farkash, Ted M. Ross, Michael C. Carroll, Marilia Cascalho

×

CTLA4-Ig in combination with FTY720 promotes allograft survival in sensitized recipients
Stella H. Khiew, Jinghui Yang, James S. Young, Jianjun Chen, Qiang Wang, Dengping Yin, Vinh Vu, Michelle L. Miller, Roger Sciammas, Maria-Luisa Alegre, Anita S. Chong
Stella H. Khiew, Jinghui Yang, James S. Young, Jianjun Chen, Qiang Wang, Dengping Yin, Vinh Vu, Michelle L. Miller, Roger Sciammas, Maria-Luisa Alegre, Anita S. Chong
View: Text | PDF

CTLA4-Ig in combination with FTY720 promotes allograft survival in sensitized recipients

  • Text
  • PDF
Abstract

Despite recent evidence of improved graft outcomes and safety, the high incidence of early acute cellular rejection with belatacept, a high-affinity CTLA4-Ig, has limited its use in clinical transplantation. Here we define how the incomplete control of endogenous donor-reactive memory T cells results in belatacept-resistant rejection in an experimental model of BALB/c.2W-OVA donor heart transplantation into C57BL/6 recipients presensitized to donor splenocytes. These sensitized mice harbored modestly elevated numbers of endogenous donor-specific memory T cells and alloantibodies compared with naive recipients. Continuous CTLA4-Ig treatment was unexpectedly efficacious at inhibiting endogenous graft-reactive T cell expansion but was unable to inhibit late CD4+ and CD8+ T cell infiltration into the allografts, and rejection was observed in 50% of recipients by day 35 after transplantation. When CTLA4-Ig was combined with the sphingosine 1-phosphate receptor-1 (S1PR1) functional antagonist FTY720, alloantibody production was inhibited and donor-specific IFN-γ–producing T cells were reduced to levels approaching nonsensitized tolerant recipients. Late T cell recruitment into the graft was also restrained, and graft survival improved with this combination therapy. These observations suggest that a rational strategy consisting of inhibiting memory T cell expansion and trafficking into the allograft with CTLA4-Ig and FTY720 can promote allograft survival in allosensitized recipients.

Authors

Stella H. Khiew, Jinghui Yang, James S. Young, Jianjun Chen, Qiang Wang, Dengping Yin, Vinh Vu, Michelle L. Miller, Roger Sciammas, Maria-Luisa Alegre, Anita S. Chong

×

Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop
Vibha N. Lama, John A. Belperio, Jason D. Christie, Souheil El-Chemaly, Michael C. Fishbein, Andrew E. Gelman, Wayne W. Hancock, Shaf Keshavjee, Daniel Kreisel, Victor E. Laubach, Mark R. Looney, John F. McDyer, Thalachallour Mohanakumar, Rebecca A. Shilling, Angela Panoskaltsis-Mortari, David S. Wilkes, Jerry P. Eu, Mark R. Nicolls
Vibha N. Lama, John A. Belperio, Jason D. Christie, Souheil El-Chemaly, Michael C. Fishbein, Andrew E. Gelman, Wayne W. Hancock, Shaf Keshavjee, Daniel Kreisel, Victor E. Laubach, Mark R. Looney, John F. McDyer, Thalachallour Mohanakumar, Rebecca A. Shilling, Angela Panoskaltsis-Mortari, David S. Wilkes, Jerry P. Eu, Mark R. Nicolls
View: Text | PDF

Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop

  • Text
  • PDF
Abstract

Lung transplantation, a cure for a number of end-stage lung diseases, continues to have the worst long-term outcomes when compared with other solid organ transplants. Preclinical modeling of the most common and serious lung transplantation complications are essential to better understand and mitigate the pathophysiological processes that lead to these complications. Various animal and in vitro models of lung transplant complications now exist and each of these models has unique strengths. However, significant issues, such as the required technical expertise as well as the robustness and clinical usefulness of these models, remain to be overcome or clarified. The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop in March 2016 to review the state of preclinical science addressing the three most important complications of lung transplantation: primary graft dysfunction (PGD), acute rejection (AR), and chronic lung allograft dysfunction (CLAD). In addition, the participants of the workshop were tasked to make consensus recommendations on the best use of these complimentary models to close our knowledge gaps in PGD, AR, and CLAD. Their reviews and recommendations are summarized in this report. Furthermore, the participants outlined opportunities to collaborate and directions to accelerate research using these preclinical models.

Authors

Vibha N. Lama, John A. Belperio, Jason D. Christie, Souheil El-Chemaly, Michael C. Fishbein, Andrew E. Gelman, Wayne W. Hancock, Shaf Keshavjee, Daniel Kreisel, Victor E. Laubach, Mark R. Looney, John F. McDyer, Thalachallour Mohanakumar, Rebecca A. Shilling, Angela Panoskaltsis-Mortari, David S. Wilkes, Jerry P. Eu, Mark R. Nicolls

×

Imaging protective mast cells in living mice during severe contact hypersensitivity
Laurent L. Reber, Riccardo Sibilano, Philipp Starkl, Axel Roers, Michele A. Grimbaldeston, Mindy Tsai, Nicolas Gaudenzio, Stephen J. Galli
Laurent L. Reber, Riccardo Sibilano, Philipp Starkl, Axel Roers, Michele A. Grimbaldeston, Mindy Tsai, Nicolas Gaudenzio, Stephen J. Galli
View: Text | PDF

Imaging protective mast cells in living mice during severe contact hypersensitivity

  • Text
  • PDF
Abstract

Contact hypersensitivity (CHS) is a common skin disease induced by epicutaneous sensitization to haptens. Conflicting results have been obtained regarding pathogenic versus protective roles of mast cells (MCs) in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. Here we describe a fluorescent imaging approach that enables in vivo selective labeling and tracking of MC secretory granules by real-time intravital 2-photon microscopy in living mice, and permits the identification of such MCs as a potential source of cytokines in different disease models. We show using this method that dermal MCs release their granules progressively into the surrounding microenvironment, but also represent an initial source of the antiinflammatory cytokine IL-10, during the early phase of severe CHS reactions. Finally, using 3 different types of MC-deficient mice, as well as mice in which IL-10 is ablated specifically in MCs, we show that IL-10 production by MCs can significantly limit the inflammation and tissue pathology observed in severe CHS reactions.

Authors

Laurent L. Reber, Riccardo Sibilano, Philipp Starkl, Axel Roers, Michele A. Grimbaldeston, Mindy Tsai, Nicolas Gaudenzio, Stephen J. Galli

×
  • ← Previous
  • 1
  • 2
  • …
  • 102
  • 103
  • 104
  • …
  • 111
  • 112
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts