The incidence of early onset colorectal cancer (EO-CRC) is rising and is poorly understood. Lifestyle factors and altered genetic background possibly contribute. Here we performed targeted exon sequencing of archived leukocyte DNA from 158 EO-CRC participants, which identified a missense mutation at p.A98V within the proximal DNA binding domain of Hepatic Nuclear Factor 1 alpha (HNF1AA98V, Rs1800574). The HNF1AA98V exhibited reduced DNA binding. To test function, the HNF1A variant was introduced into the mouse genome by CRISPR/Cas9 and the mice were placed on either a high fat (HFD) or high sugar diet (HSD). Only 1% of the HNF1A mutant mice developed polyps on normal chow; however,19% and 3% developed polyps on the HFD and HSD, respectively. RNA-Seq revealed an increase in metabolic, immune, lipid biogenesis genes and Wnt/β-catenin signaling components in the HNF1A mutant relative to the wildtype mice. Mouse polyps and colon cancers from subjects carrying the HNF1AA98V variant exhibited reduced CDX2 and elevated β-catenin proteins. We further demonstrated decreased occupancy of HNF1AA98V at the Cdx2 locus and reduced Cdx2 promoter activity compared to wildtype HNF1A. Collectively, our study shows that the HNF1AA98V variant plus HFD promotes the formation of colonic polyps by activating β-catenin via decreasing Cdx2 expression.
Heyu Song, Ricky A. Sontz, Matthew J. Vance, Julia M. Morris, Sulaiman Sheriff, Songli Zhu, Suzann Duan, Jiping Zeng, Erika Koeppe, Ritu Pandey, Curtis A. Thorne, Elena M. Stoffel, Juanita L. Merchant
Altered mitochondrial function without a well-defined cause has been documented in the patients with ulcerative colitis (UC). In our efforts to understand UC pathogenesis, we observed reduced expression of clustered mitochondrial homologue, CLUH, only in the active UC tissues compared to the unaffected areas from the same patient and healthy controls. Stimulation with bacterial toll like receptor (TLR) ligands similarly reduced CLUH expression in the human primary macrophages. Further, CLUH negatively regulated secretion of pro-inflammatory cytokines IL6, TNF-α and rendered a pro-inflammatory niche in the TLR stimulated macrophage. CLUH was further found to bind to mitochondrial fission protein DRP-1 and also regulated DRP-1 transcription in the human macrophages. In the TLR ligand stimulated macrophages, absence of CLUH led to enhanced DRP-1 availability for mitochondrial fission and smaller dysfunctional mitochondrial pool was observed. Mechanistically, this fissioned mitochondrial pool in turn enhanced mitochondrial ROS production, reduced mitophagy and lysosomal function in the CLUH knockout macrophages. Remarkably, our studies in the mice model of colitis with CLUH knockdown displayed exacerbated disease pathology. Taken together, this is the first report signifying the role of CLUH in UC pathogenesis, by means of regulating inflammation via maintaining mitochondrial-lysosomal functions in the human macrophages and intestinal mucosa.
Shaziya Khan, Desh Raj, Shikha Sahu, Anam Naseer, Nishakumari C. Singh, Sunaina Kumari, Sharmeen Ishteyaque, Jyotsna Sharma, Promila Lakra, Madhav Nilakanth Mugale, Arun Kumar Trivedi, Mrigank Srivastava, Tulika Chandra, Vivek Bhosale, Manoj Kumar Barthwal, Shashi Kumar Gupta, Kalyan Mitra, Aamir Nazir, Uday C. Ghoshal, Amit Lahiri
Rationale. RNA binding protein 47 (RBM47) is required for embryonic endoderm development but a role in adult intestine is unknown. Objective. We studied intestine-specific Rbm47 knockout mice (Rbm47-IKO) following intestinal injury and made crosses into Apcmin/+ mice to examine alterations in intestinal proliferation, response to injury and tumorigenesis. We also interrogated human colorectal polyps and colon carcinoma tissue. Findings. Rbm47-IKO mice exhibit increased proliferation, abnormal villus morphology and cellularity, with corresponding changes in Rbm47-IKO organoids. Rbm47-IKO mice adapt to radiation injury and are protected against chemical-induced colitis, with Rbm47-IKO intestine showing upregulation of antioxidant and Wnt signaling pathways as well as stem cell and developmental genes. Furthermore, Rbm47-IKO mice are protected against colitis-associated cancer. By contrast, aged Rbm47-IKO mice develop spontaneous polyposis and Rbm47-IKO, Apcmin/+ mice manifest an increased intestinal polyp burden. RBM47 mRNA was decreased in human colorectal cancer versus paired normal tissue along with alternative splicing of TJP1 mRNA. Public databases revealed stage-specific reduction in RBM47 expression in colorectal cancer, associated independently with decreased overall survival. Conclusions. These findings implicate RBM47 as a cell-intrinsic modifier of intestinal growth, inflammatory and tumorigenic pathways.
Saeed Soleymanjahi, Valerie Blanc, Elizabeth A. Molitor, David M. Alvarado, Yan Xie, Vered Gazit, Jeffrey W. Brown, Kathleen Byrnes, Ta-Chiang Liu, Jason C. Mills, Matthew A. Ciorba, Deborah C. Rubin, Nicholas O. Davidson
Macrophages intimately interact with intestinal epithelial cells, but the consequences of defective macrophage–epithelial cell interactions for protection against enteric pathogens are poorly understood. Here, we show that in mice with a deletion in protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in macrophages, infection with Citrobacter rodentium, a model of enteropathogenic and enterohemorrhagic E. coli infection in humans, promoted a strong type 1/IL-22–driven immune response, culminating in accelerated disease but also faster clearance of the pathogen. In contrast, deletion of PTPN2 specifically in epithelial cells rendered the epithelium unable to upregulate antimicrobial peptides and consequently resulted in a failure to eliminate the infection. The ability of PTPN2-deficient macrophages to induce faster recovery from C. rodentium was dependent on macrophage-intrinsic IL-22 production, which was highly increased in macrophages deficient in PTPN2. Our findings demonstrate the importance of macrophage-mediated factors, and especially macrophage-derived IL-22, for the induction of protective immune responses in the intestinal epithelium, and show that normal PTPN2 expression in the epithelium is crucial to allow for protection against enterohemorrhagic E. coli and other intestinal pathogens.
Marianne R. Spalinger, Vinicius Canale, Anica Becerra, Ali Shawki, Meli’sa Crawford, Alina N. Santos, Pritha Chatterjee, Jiang Li, Meera G. Nair, Declan F. McCole
As a hallmark for inflammatory bowel disease (IBD), elevated intestinal epithelial cell (IEC) death compromises the gut barrier, activating inflammatory response and triggering more IEC death. However, the precise intracellular machinery that prevents IEC death and break this vicious feedback remains largely unknown. Here, we report that Gab1 expression is decreased in patients with IBD and inversely correlated with IBD severity. Gab1 deficiency in intestinal epithelial cells accounts for the exacerbated colitis induced by dextran sodium sulfate (DSS) owing to sensitizing IECs to RIPK3-mediated necroptosis, which irreversibly disrupted homeostasis of the epithelial barrier and promoted intestinal inflammation. Mechanistically, Gab1 negatively regulates necroptosis signaling through inhibiting the formation of RIPK1/RIPK3 complex in response to TNF-α. Importantly, administration of RIPK3 inhibitor reveals a curative effect in epithelial Gab1-deficient mice. Further analysis indicates mice with Gab1 deletion are prone to inflammation associated colorectal tumorigenesis. Collectively, our study defines a protective role for Gab1 in colitis and colitis-driven colorectal cancer through negatively regulating RIPK3-dependent necroptosis, in which may serve as an important target to fine-tune necroptosis and intestinal inflammation-related disease.
Jiaqi Xu, Shihao Li, Wei Jin, Hui Zhou, Tingting Zhong, Xiaoqing Cheng, Yujuan Fu, Peng Xiao, Hongqiang Cheng, Di Wang, Yuehai Ke, Zhinong Jiang, Xue Zhang
The pronounced choleretic properties of norursodeoxycholic acid (norUDCA) to induce bicarbonate-rich bile secretion have been attributed to its ability to undergo cholehepatic shunting. The goal of this study was to identify the mechanisms underlying the choleretic actions of norUDCA and role of the bile acid transporters. Here, we show that the apical sodium-dependent bile acid transporter (ASBT), Organic solute transporter-alpha (OSTα), and Organic anion transporting polypeptide 1a/1b (OATP1a/1b) transporters are dispensable for the norUDCA-stimulation of bile flow and biliary bicarbonate secretion. Chloride channels in biliary epithelial cells provide the driving force for biliary secretion. norUDCA potently stimulated chloride currents in mouse large cholangiocytes, which was blocked by siRNA silencing and pharmacological inhibition of the calcium-activated chloride channel transmembrane member 16A (TMEM16A), but unaffected by ASBT inhibition. In agreement, blocking intestinal bile acid reabsorption by co-administration of an ASBT inhibitor or bile acid sequestrant did not impact norUDCA stimulation of bile flow in wildtype mice. The results indicate that these major bile acid transporters are not directly involved in the absorption, cholehepatic shunting, or choleretic actions of norUDCA. Additionally, the findings support further investigation of the therapeutic synergy between norUDCA and ASBT inhibitors or bile acid sequestrants for cholestatic liver disease.
Jennifer K. Truong, Jianing Li, Qin Li, Kimberly Pachura, Anuradha Rao, Sanjeev Gumber, Claudia D. Fuchs, Andrew P. Feranchak, Saul J. Karpen, Michael Trauner, Paul A. Dawson
Patients with nonalcoholic steatohepatitis (NASH) have increased expression of liver monocyte chemoattractant protein-1 (MCP-1), but its cellular source and contribution to various aspects of NASH pathophysiology remain debated. We demonstrated increased liver CCL2 (which encodes MCP-1) expression in patients with NASH, and commensurately, a 100-fold increase in hepatocyte Ccl2 expression in a mouse model of NASH, accompanied by increased liver monocyte-derived macrophage (MoMF) infiltrate and liver fibrosis. To test repercussions of increased hepatocyte-derived MCP-1, we generated hepatocyte-specific Ccl2-knockout mice, which showed reduced liver MoMF infiltrate as well as decreased liver fibrosis. Forced hepatocyte MCP-1 expression provoked the opposite phenotype in chow-fed wild-type mice. Consistent with increased hepatocyte Notch signaling in NASH, we observed a close correlation between markers of Notch activation and CCL2 expression in patients with NASH. We found that an evolutionarily conserved Notch/recombination signal binding protein for immunoglobulin kappa J region binding site in the Ccl2 promoter mediated transactivation of the Ccl2 promoter in NASH diet–fed mice. Increased liver MoMF infiltrate and liver fibrosis seen in opposite gain-of-function mice was ameliorated with concomitant hepatocyte Ccl2 knockout or CCR2 inhibitor treatment. Hepatocyte Notch activation prompts MCP-1–dependent increase in liver MoMF infiltration and fibrosis.
Jinku Kang, Jorge Postigo-Fernandez, KyeongJin Kim, Changyu Zhu, Junjie Yu, Marica Meroni, Brent Mayfield, Alberto Bartolomé, Dianne H. Dapito, Anthony W. Ferrante Jr., Paola Dongiovanni, Luca Valenti, Remi J. Creusot, Utpal B. Pajvani
Nonalcoholic steatohepatitis (NASH) is closely related to liver fibrosis. The role of coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) in NASH remains unknown. CHCHD2’s functions as a transcription factor have received much less attention than those in mitochondria. Herein, we systematically characterized the role of CHCHD2 as a transcription factor by chromatin immunoprecipitation sequencing and found its target genes were enriched in nonalcoholic fatty liver disease (NAFLD). Overall, CHCHD2 expression was found to be increased in the livers of patients with NAFLD and those of NASH mice. In line with these findings, CHCHD2 deficiency ameliorated NASH- and thioacetamide-induced liver fibrosis, whereas hepatocyte-specific CHCHD2 overexpression promoted liver fibrosis in NASH mice via Notch signaling. Specifically, CHCHD2-overexpressing hepatocytes activated hepatic stellate cells by upregulating osteopontin levels, a downstream mediator of Notch signals. Moreover, Notch inhibition attenuated CHCHD2 overexpression–induced liver fibrosis in vivo and in vitro. Then we found lipopolysaccharide-induced CHCHD2 expression in hepatocytes was reverted by verteporfin, an inhibitor that disrupts the interaction between Yes-associated protein (YAP) and transcriptional enhanced associate domains (TEADs). In addition, CHCHD2 levels were positively correlated with those of TEAD1 in human samples. In conclusion, CHCHD2 is upregulated via YAP/TAZ-TEAD in NASH livers and consequently promotes liver fibrosis by activating the Notch pathway and enhancing osteopontin production.
Yue Li, Wenjing Xiu, Jingwen Xu, Xiangmei Chen, Guangyan Wang, Jinjie Duan, Lei Sun, Ben Liu, Wen Xie, Guangyin Pu, Qi Wang, Chunjiong Wang
Acute and chronic intestinal inflammation is associated with epithelial damage, resulting in mucosal wounds in the forms of erosions and ulcers in the intestinal tract. Intestinal epithelial cells (IECs) and immune cells in the wound milieu secrete cytokines and lipid mediators to influence repair. Leukotriene B4 (LTB4), a lipid chemokine, binds to its receptor BLT1 and promotes migration of immune cells to sites of active inflammation, however a role for intestinal epithelial BLT1 during mucosal wound repair is not known. Here we report that BLT1 is expressed in IECs both in vitro and in vivo, where it functions as a receptor not only for LTB4 but also for another ligand Resolvin E1. Intestinal epithelial BLT1 expression is increased when epithelial cells are exposed to an inflammatory microenvironment. Using human and murine primary colonic epithelial cells, we reveal that LTB4-BLT1 axis promotes epithelial migration and proliferation leading to accelerated epithelial wound repair. Furthermore, in vivo intestinal wound repair experiments in BLT1-deficient mice and bone marrow chimeras demonstrate an important contribution of epithelial BLT1 during colonic mucosal wound repair. Taken together, our findings show a novel pro-repair in IEC mechanism mediated by BLT1 signaling.
Shusaku Hayashi, Chithra K. Muraleedharan, Makito Oku, Sunil Tomar, Simon P. Hogan, Miguel Quiros, Charles A. Parkos, Asma Nusrat
Intestinal epithelial integrity is commonly disrupted in patients with critical disorders, but the exact underlying mechanisms are unclear. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control different cell functions and are involved in pathologies. Here, we investigated the role of T-UCRs in intestinal epithelial homeostasis and identified T-UCR uc.230 as a major regulator of epithelial renewal, apoptosis, and barrier function. Compared with controls, intestinal mucosal tissues from patients with ulcerative colitis and from mice with colitis or fasted for 48 hours had increased levels of uc.230. Silencing uc.230 inhibited the growth of intestinal epithelial cells (IECs) and organoids and caused epithelial barrier dysfunction. Silencing uc.230 also increased IEC vulnerability to apoptosis, whereas increasing uc.230 levels protected IECs against cell death. In mice with colitis, reduced uc.230 levels enhanced mucosal inflammatory injury and delayed recovery. Mechanistic studies revealed that uc.230 increased CUG-binding protein 1 (CUGBP1) by acting as a natural decoy RNA for miR-503, which interacts with Cugbp1 mRNA and represses its translation. These findings indicate that uc.230 sustains intestinal mucosal homeostasis by promoting epithelial renewal and barrier function and that it protects IECs against apoptosis by serving as a natural sponge for miR-503, thereby preserving CUGBP1 expression.
Ting-Xi Yu, Sudhakar Kalakonda, Xiangzheng Liu, Naomi Han, Hee K. Chung, Lan Xiao, Jaladanki N. Rao, Tong-Chuan He, Jean-Pierre Raufman, Jian-Ying Wang
No posts were found with this tag.