Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Long noncoding RNA uc.230/CUG-binding protein 1 axis sustains intestinal epithelial homeostasis and response to tissue injury
Ting-Xi Yu, … , Jean-Pierre Raufman, Jian-Ying Wang
Ting-Xi Yu, … , Jean-Pierre Raufman, Jian-Ying Wang
Published October 10, 2022
Citation Information: JCI Insight. 2022;7(19):e156612. https://doi.org/10.1172/jci.insight.156612.
View: Text | PDF
Research Article Gastroenterology

Long noncoding RNA uc.230/CUG-binding protein 1 axis sustains intestinal epithelial homeostasis and response to tissue injury

  • Text
  • PDF
Abstract

Intestinal epithelial integrity is commonly disrupted in patients with critical disorders, but the exact underlying mechanisms are unclear. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control different cell functions and are involved in pathologies. Here, we investigated the role of T-UCRs in intestinal epithelial homeostasis and identified T-UCR uc.230 as a major regulator of epithelial renewal, apoptosis, and barrier function. Compared with controls, intestinal mucosal tissues from patients with ulcerative colitis and from mice with colitis or fasted for 48 hours had increased levels of uc.230. Silencing uc.230 inhibited the growth of intestinal epithelial cells (IECs) and organoids and caused epithelial barrier dysfunction. Silencing uc.230 also increased IEC vulnerability to apoptosis, whereas increasing uc.230 levels protected IECs against cell death. In mice with colitis, reduced uc.230 levels enhanced mucosal inflammatory injury and delayed recovery. Mechanistic studies revealed that uc.230 increased CUG-binding protein 1 (CUGBP1) by acting as a natural decoy RNA for miR-503, which interacts with Cugbp1 mRNA and represses its translation. These findings indicate that uc.230 sustains intestinal mucosal homeostasis by promoting epithelial renewal and barrier function and that it protects IECs against apoptosis by serving as a natural sponge for miR-503, thereby preserving CUGBP1 expression.

Authors

Ting-Xi Yu, Sudhakar Kalakonda, Xiangzheng Liu, Naomi Han, Hee K. Chung, Lan Xiao, Jaladanki N. Rao, Tong-Chuan He, Jean-Pierre Raufman, Jian-Ying Wang

×

Full Text PDF | Download (14.48 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts