Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Gastroenterology

  • 189 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 13
  • 14
  • 15
  • …
  • 18
  • 19
  • Next →
Intestinal alkaline phosphatase targets the gut barrier to prevent aging
Florian Kühn, Fatemeh Adiliaghdam, Paul M. Cavallaro, Sulaiman R. Hamarneh, Amy Tsurumi, Raza S. Hoda, Alexander R. Munoz, Yashoda Dhole, Juan M. Ramirez, Enyu Liu, Robin Vasan, Yang Liu, Ehsan Samarbafzadeh, Rocio A. Nunez, Matthew Z. Farber, Vanita Chopra, Madhu S. Malo, Laurence G. Rahme, Richard A. Hodin
Florian Kühn, Fatemeh Adiliaghdam, Paul M. Cavallaro, Sulaiman R. Hamarneh, Amy Tsurumi, Raza S. Hoda, Alexander R. Munoz, Yashoda Dhole, Juan M. Ramirez, Enyu Liu, Robin Vasan, Yang Liu, Ehsan Samarbafzadeh, Rocio A. Nunez, Matthew Z. Farber, Vanita Chopra, Madhu S. Malo, Laurence G. Rahme, Richard A. Hodin
View: Text | PDF

Intestinal alkaline phosphatase targets the gut barrier to prevent aging

  • Text
  • PDF
Abstract

Gut barrier dysfunction and gut-derived chronic inflammation play crucial roles in human aging. The gut brush border enzyme intestinal alkaline phosphatase (IAP) functions to inhibit inflammatory mediators and also appears to be an important positive regulator of gut barrier function and microbial homeostasis. We hypothesized that this enzyme could play a critical role in regulating the aging process. We tested the role of several IAP functions for prevention of age-dependent alterations in intestinal homeostasis by employing different loss-of-function and supplementation approaches. In mice, there is an age-related increase in gut permeability that is accompanied by increases in gut-derived portal venous and systemic inflammation. All these phenotypes were significantly more pronounced in IAP-deficient animals. Oral IAP supplementation significantly decreased age-related gut permeability and gut-derived systemic inflammation, resulted in less frailty, and extended lifespan. Furthermore, IAP supplementation was associated with preserving the homeostasis of gut microbiota during aging. These effects of IAP were also evident in a second model system, Drosophilae melanogaster. IAP appears to preserve intestinal homeostasis in aging by targeting crucial intestinal alterations, including gut barrier dysfunction, dysbiosis, and endotoxemia. Oral IAP supplementation may represent a novel therapy to counteract the chronic inflammatory state leading to frailty and age-related diseases in humans.

Authors

Florian Kühn, Fatemeh Adiliaghdam, Paul M. Cavallaro, Sulaiman R. Hamarneh, Amy Tsurumi, Raza S. Hoda, Alexander R. Munoz, Yashoda Dhole, Juan M. Ramirez, Enyu Liu, Robin Vasan, Yang Liu, Ehsan Samarbafzadeh, Rocio A. Nunez, Matthew Z. Farber, Vanita Chopra, Madhu S. Malo, Laurence G. Rahme, Richard A. Hodin

×

Aim2-Mediated/IFN-β-Independent Regulation of Gastric Metaplastic Lesions via CD8+ T Cells
Mohamad El-Zaatari, Shrinivas Bishu, Min Zhang, Helmut Grasberger, Guoqing Hou, Henry R. Haley, Brock A. Humphries, Li-Jyun Syu, Andrzej Dlugosz, Kathryn E. Luker, Gary Luker, Kathryn A. Eaton, Nobuhiko Kamada, Marilia Cascalho, John Y. Kao
Mohamad El-Zaatari, Shrinivas Bishu, Min Zhang, Helmut Grasberger, Guoqing Hou, Henry R. Haley, Brock A. Humphries, Li-Jyun Syu, Andrzej Dlugosz, Kathryn E. Luker, Gary Luker, Kathryn A. Eaton, Nobuhiko Kamada, Marilia Cascalho, John Y. Kao
View: Text | PDF

Aim2-Mediated/IFN-β-Independent Regulation of Gastric Metaplastic Lesions via CD8+ T Cells

  • Text
  • PDF
Abstract

Development of gastric cancer is often preceded by chronic inflammation, but the immune cellular mechanisms underlying this process are unclear. Here we demonstrated that an inflammasome molecule, absent in melanoma 2 (Aim2), was upregulated in gastric cancer patients, and in spasmolytic polypeptide-expressing metaplasia (SPEM) of chronically Helicobacter felis (H. felis)-infected stomachs in mice. However, we found that Aim2 was not necessary for inflammasome function during gastritis. In contrast, Aim2 deficiency led to an increase in gastric CD8+ T cell frequency, which exacerbated metaplasia. These gastric CD8+ T cells from Aim2-/- mice were found to have lost their homing receptor expression (S1pr1 and CD62l), a feature of tissue resident memory T cells (TRM). The process was not mediated by Aim2-dependent regulation of IFN-β, or by dendritic cell-intrinsic Aim2. Rather, Aim2 deficiency contributed to an increased production of Cxcl16 by B cells, which could suppress S1pr1 and CD62l in CD8+ T cells. The study describes a novel function of Aim2 that regulates CD8+ T cell infiltration and retention within chronically inflamed solid organ tissue. This function operates independently of the inflammasome, IFN-β or dendritic cells. We provide evidence that B cells can contribute to this mechanism via Cxcl16.

Authors

Mohamad El-Zaatari, Shrinivas Bishu, Min Zhang, Helmut Grasberger, Guoqing Hou, Henry R. Haley, Brock A. Humphries, Li-Jyun Syu, Andrzej Dlugosz, Kathryn E. Luker, Gary Luker, Kathryn A. Eaton, Nobuhiko Kamada, Marilia Cascalho, John Y. Kao

×

Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice
Jun Xu, Hsiao-Yen Ma, Xiao Liu, Sara Rosenthal, Jacopo Baglieri, Ryan McCubbin, Mengxi Sun, Yukinori Koyama, Cedric G. Geoffroy, Kaoru Saijo, Linshan Shang, Takahiro Nishio, Igor Maricic, Max Kreifeldt, Praveen Kusumanchi, Amanda Roberts, Binhai Zheng, Vipin Kumar, Karsten Zengler, Donald P. Pizzo, Mojgan Hosseini, Candice Contet, Christopher K. Glass, Suthat Liangpunsakul, Hidekazu Tsukamoto, Bin Gao, Michael Karin, David A. Brenner, George F. Koob, Tatiana Kisseleva
Jun Xu, Hsiao-Yen Ma, Xiao Liu, Sara Rosenthal, Jacopo Baglieri, Ryan McCubbin, Mengxi Sun, Yukinori Koyama, Cedric G. Geoffroy, Kaoru Saijo, Linshan Shang, Takahiro Nishio, Igor Maricic, Max Kreifeldt, Praveen Kusumanchi, Amanda Roberts, Binhai Zheng, Vipin Kumar, Karsten Zengler, Donald P. Pizzo, Mojgan Hosseini, Candice Contet, Christopher K. Glass, Suthat Liangpunsakul, Hidekazu Tsukamoto, Bin Gao, Michael Karin, David A. Brenner, George F. Koob, Tatiana Kisseleva
View: Text | PDF

Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice

  • Text
  • PDF
Abstract

Chronic alcohol abuse has a detrimental effect on the brain and liver. There is no effective treatment for these patients, and the mechanism underlying alcohol addiction and consequent alcohol-induced damage of the liver/brain axis remains unresolved. We compared experimental models of alcoholic liver disease (ALD) and alcohol dependence in mice and demonstrated that genetic ablation of IL-17 receptor A (IL-17ra–/–) or pharmacological blockade of IL-17 signaling effectively suppressed the increased voluntary alcohol drinking in alcohol-dependent mice and blocked alcohol-induced hepatocellular and neurological damage. The level of circulating IL-17A positively correlated with the alcohol use in excessive drinkers and was further increased in patients with ALD as compared with healthy individuals. Our data suggest that IL-17A is a common mediator of excessive alcohol consumption and alcohol-induced liver/brain injury, and targeting IL-17A may provide a novel strategy for treatment of alcohol-induced pathology.

Authors

Jun Xu, Hsiao-Yen Ma, Xiao Liu, Sara Rosenthal, Jacopo Baglieri, Ryan McCubbin, Mengxi Sun, Yukinori Koyama, Cedric G. Geoffroy, Kaoru Saijo, Linshan Shang, Takahiro Nishio, Igor Maricic, Max Kreifeldt, Praveen Kusumanchi, Amanda Roberts, Binhai Zheng, Vipin Kumar, Karsten Zengler, Donald P. Pizzo, Mojgan Hosseini, Candice Contet, Christopher K. Glass, Suthat Liangpunsakul, Hidekazu Tsukamoto, Bin Gao, Michael Karin, David A. Brenner, George F. Koob, Tatiana Kisseleva

×

Null mutations of NEUROG3 are associated with delayed onset diabetes mellitus
R. Sergio Solorzano-Vargas, Matthew Bjerknes, Jiafang Wang, S. Vincent Wu, Manuel G. Garcia-Careaga, Duke Pisit, Hazel Cheng, Michael S. German, Senta Georgia, Martin G. Martín
R. Sergio Solorzano-Vargas, Matthew Bjerknes, Jiafang Wang, S. Vincent Wu, Manuel G. Garcia-Careaga, Duke Pisit, Hazel Cheng, Michael S. German, Senta Georgia, Martin G. Martín
View: Text | PDF

Null mutations of NEUROG3 are associated with delayed onset diabetes mellitus

  • Text
  • PDF
Abstract

Biallelic mutations of the gene encoding the transcription factor NEUROG3 are associated with a rare disorder that presents in neonates as generalized malabsorption – due to a complete absence of enteroendocrine cells – followed, in early childhood or beyond, by insulin-dependent diabetes mellitus (IDDM). The commonly delayed onset of IDDM suggests a differential requirement for NEUROG3 in endocrine cell generation in the human pancreas versus the intestine. However, previously identified human mutations were hypomorphic, and hence may have had residual function in pancreas. We report two patients with biallelic functionally null variants of the NEUROG3 gene who nonetheless did not present with IDDM during infancy, but instead developed permanent IDDM during middle childhood ages. The variants show no evidence of function in traditional promoter-based assays of NEUROG3 function and also fail to exhibit function in a variety of novel in vitro and in vivo molecular assays designed to discern residual NEUROG3 function. These findings imply that unlike in mice, pancreatic endocrine cell generation in humans is not entirely dependent on NEUROG3 expression, and hence suggests the presence of unidentified redundant in vivo pathways in human pancreas capable of yielding beta-cell mass sufficient to maintain euglycemia until early childhood.

Authors

R. Sergio Solorzano-Vargas, Matthew Bjerknes, Jiafang Wang, S. Vincent Wu, Manuel G. Garcia-Careaga, Duke Pisit, Hazel Cheng, Michael S. German, Senta Georgia, Martin G. Martín

×

NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high anti-tumor activity against colorectal cancer
Joanna Mikulak, Ferdinando Oriolo, Elena Bruni, Alessandra Roberto, Federico S. Colombo, Anna Villa, Marita Bosticardo, Ileana Bortolomai, Elena Lo Presti, Serena Meraviglia, Francesco Dieli, Stefania Vetrano, Silvio Danese, Silvia Della Bella, Michele M. Carvello, Matteo Sacchi, Giovanni Cugini, Giovanni Colombo, Marco Klinger, Paola Spaggiari, Massimo Roncalli, Immo Prinz, Sarina Ravens, Biagio di Lorenzo, Emanuela Marcenaro, Bruno Silva-Santos, Antonino Spinelli, Domenico Mavilio
Joanna Mikulak, Ferdinando Oriolo, Elena Bruni, Alessandra Roberto, Federico S. Colombo, Anna Villa, Marita Bosticardo, Ileana Bortolomai, Elena Lo Presti, Serena Meraviglia, Francesco Dieli, Stefania Vetrano, Silvio Danese, Silvia Della Bella, Michele M. Carvello, Matteo Sacchi, Giovanni Cugini, Giovanni Colombo, Marco Klinger, Paola Spaggiari, Massimo Roncalli, Immo Prinz, Sarina Ravens, Biagio di Lorenzo, Emanuela Marcenaro, Bruno Silva-Santos, Antonino Spinelli, Domenico Mavilio
View: Text | PDF

NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high anti-tumor activity against colorectal cancer

  • Text
  • PDF
Abstract

γδ T cells account for a large fraction of human intestinal intraepithelial lymphocytes (IELs) endowed with potent anti-tumor activities. However, little is known about their origin, phenotype and clinical relevance in colorectal cancer (CRC). To determine γδ IEL gut-specificity, homing and functions, γδ T cells were purified from human healthy blood, lymph nodes, liver, skin, intestine either disease-free or affected by CRC or generated from thymic precursors. The constitutive expression of NKp46 specifically identifies a new subset of cytotoxic Vδ1 T cells representing the largest fraction of gut-resident IELs. The ontogeny and gut-tropism of NKp46pos/Vδ1 IELs depends both on distinctive features of Vδ1 thymic precursors and gut-environmental factors. Either the constitutive presence of NKp46 on tissue-resident Vδ1 intestinal IELs or its induced-expression on IL-2/IL-15 activated Vδ1 thymocytes are associated with anti-tumor functions. Higher frequencies of NKp46pos/Vδ1 IELs in tumor-free specimens from CRC patients correlate with a lower risk of developing metastatic III/IV disease stages. Additionally, our in vitro settings reproducing CRC tumor-microenvironment inhibited the expansion of NKp46pos/Vδ1 cells from activated thymic precursors. These results parallel the very low frequencies of NKp46pos/Vδ1 IELs able to infiltrate CRC, thus providing new insights to either follow-up cancer progression or develop novel adoptive cellular therapies.

Authors

Joanna Mikulak, Ferdinando Oriolo, Elena Bruni, Alessandra Roberto, Federico S. Colombo, Anna Villa, Marita Bosticardo, Ileana Bortolomai, Elena Lo Presti, Serena Meraviglia, Francesco Dieli, Stefania Vetrano, Silvio Danese, Silvia Della Bella, Michele M. Carvello, Matteo Sacchi, Giovanni Cugini, Giovanni Colombo, Marco Klinger, Paola Spaggiari, Massimo Roncalli, Immo Prinz, Sarina Ravens, Biagio di Lorenzo, Emanuela Marcenaro, Bruno Silva-Santos, Antonino Spinelli, Domenico Mavilio

×

eIF4A inhibition circumvents uncontrolled DNA replication mediated by 4E-BP1 loss in pancreatic cancer
David Müller, Sauyeun Shin, Théo Goullet de Rugy, Rémi Samain, Romain Baer, Manon Strehaiano, Laia Masvidal-Sanz, Julie Guillermet-Guibert, Christine Jean, Yoshinori Tsukumo, Nahum Sonenberg, Frédéric Marion, Nicolas Guilbaud, Jean-Sébastien Hoffmann, Ola Larsson, Corinne Bousquet, Stéphane Pyronnet, Yvan Martineau
David Müller, Sauyeun Shin, Théo Goullet de Rugy, Rémi Samain, Romain Baer, Manon Strehaiano, Laia Masvidal-Sanz, Julie Guillermet-Guibert, Christine Jean, Yoshinori Tsukumo, Nahum Sonenberg, Frédéric Marion, Nicolas Guilbaud, Jean-Sébastien Hoffmann, Ola Larsson, Corinne Bousquet, Stéphane Pyronnet, Yvan Martineau
View: Text | PDF

eIF4A inhibition circumvents uncontrolled DNA replication mediated by 4E-BP1 loss in pancreatic cancer

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (PDAC) relies on hyperactivated protein synthesis. Consistently, human and mouse PDAC lose expression of the translational repressor and mTOR target 4E-BP1. Using genome-wide polysome profiling, we here explore mRNAs whose translational efficiencies depend on the mTOR/4E-BP1 axis in pancreatic cancer cells. We identified a functional enrichment for mRNAs encoding DNA replication and repair proteins, including RRM2 and CDC6. Consequently, 4E-BP1 depletion favors DNA repair and renders DNA replication insensitive to mTOR inhibitors, in correlation with a sustained protein expression of CDC6 and RRM2, which is inversely correlated with 4E-BP1 expression in PDAC patient samples. DNA damage and pancreatic lesions induced by an experimental pancreatitis model uncover that 4E-BP1/2–deleted mice display an increased acinar cell proliferation and a better recovery than WT animals. Targeting translation, independently of 4E-BP1 status, using eIF4A RNA helicase inhibitors (silvestrol derivatives) selectively modulates translation and limits CDC6 expression and DNA replication, leading to reduced PDAC tumor growth. In summary, 4E-BP1 expression loss during PDAC development induces selective changes in translation of mRNA encoding DNA replication and repair protein. Importantly, targeting protein synthesis by eIF4A inhibitors circumvents PDAC resistance to mTOR inhibition.

Authors

David Müller, Sauyeun Shin, Théo Goullet de Rugy, Rémi Samain, Romain Baer, Manon Strehaiano, Laia Masvidal-Sanz, Julie Guillermet-Guibert, Christine Jean, Yoshinori Tsukumo, Nahum Sonenberg, Frédéric Marion, Nicolas Guilbaud, Jean-Sébastien Hoffmann, Ola Larsson, Corinne Bousquet, Stéphane Pyronnet, Yvan Martineau

×

Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis
Karl Katholnig, Birgit Schütz, Stephanie D. Fritsch, David Schörghofer, Monika Linke, Nyamdelger Sukhbaatar, Julia M. Matschinger, Daniela Unterleuthner, Martin Hirtl, Michaela Lang, Merima Herac, Andreas Spittler, Andreas Bergthaler, Gernot Schabbauer, Michael Bergmann, Helmut Dolznig, Markus Hengstschläger, Mark A. Magnuson, Mario Mikula, Thomas Weichhart
Karl Katholnig, Birgit Schütz, Stephanie D. Fritsch, David Schörghofer, Monika Linke, Nyamdelger Sukhbaatar, Julia M. Matschinger, Daniela Unterleuthner, Martin Hirtl, Michaela Lang, Merima Herac, Andreas Spittler, Andreas Bergthaler, Gernot Schabbauer, Michael Bergmann, Helmut Dolznig, Markus Hengstschläger, Mark A. Magnuson, Mario Mikula, Thomas Weichhart
View: Text | PDF

Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis

  • Text
  • PDF
Abstract

The mechanistic target of rapamycin complex 2 (mTORC2) is a potentially novel and promising anticancer target due to its critical roles in proliferation, apoptosis, and metabolic reprogramming of cancer cells. However, the activity and function of mTORC2 in distinct cells within malignant tissue in vivo is insufficiently explored. Surprisingly, in primary human and mouse colorectal cancer (CRC) samples, mTORC2 signaling could not be detected in tumor cells. In contrast, only macrophages in tumor-adjacent areas showed mTORC2 activity, which was downregulated in stromal macrophages residing within human and mouse tumor tissues. Functionally, inhibition of mTORC2 by specific deletion of Rictor in macrophages stimulated tumorigenesis in a colitis-associated CRC mouse model. This phenotype was driven by a proinflammatory reprogramming of mTORC2-deficient macrophages that promoted colitis via the cytokine SPP1/osteopontin to stimulate tumor growth. In human CRC patients, high SPP1 levels and low mTORC2 activity in tumor-associated macrophages correlated with a worsened clinical prognosis. Treatment of mice with a second-generation mTOR inhibitor that inhibits mTORC2 and mTORC1 exacerbated experimental colorectal tumorigenesis in vivo. In conclusion, mTORC2 activity is confined to macrophages in CRC and limits tumorigenesis. These results suggest activation but not inhibition of mTORC2 as a therapeutic strategy for colitis-associated CRC.

Authors

Karl Katholnig, Birgit Schütz, Stephanie D. Fritsch, David Schörghofer, Monika Linke, Nyamdelger Sukhbaatar, Julia M. Matschinger, Daniela Unterleuthner, Martin Hirtl, Michaela Lang, Merima Herac, Andreas Spittler, Andreas Bergthaler, Gernot Schabbauer, Michael Bergmann, Helmut Dolznig, Markus Hengstschläger, Mark A. Magnuson, Mario Mikula, Thomas Weichhart

×

Platelet IP6K1 regulates neutrophil extracellular trap-microparticle complex formation in acute pancreatitis
Raed Madhi, Milladur Rahman, Dler Taha, Johan Linders, Mohammed Merza, Yongzhi Wang, Matthias Mörgelin, Henrik Thorlacius
Raed Madhi, Milladur Rahman, Dler Taha, Johan Linders, Mohammed Merza, Yongzhi Wang, Matthias Mörgelin, Henrik Thorlacius
View: Text | PDF | Expression of Concern | Retraction

Platelet IP6K1 regulates neutrophil extracellular trap-microparticle complex formation in acute pancreatitis

  • Text
  • PDF
Abstract

Platelet inositol hexakisphosphate kinase 1 (IP6K1) has been shown to control systemic inflammation. Herein, we examined if platelets and IP6K1 regulate pancreatic tissue injury via formation of NETs in experimental models of acute pancreatitis (AP) in mice. By use of electron microscopy abundant NET formation was observed in the inflamed pancreas. These NETs contained numerous microparticles (MP) expressing CD41 or Mac-1. Platelet depletion reduced deposition of NET-MP complexes in the inflamed pancreas. Circulating platelet-neutrophil aggregates (PNA) were increased and inhibition of P-selectin not only disrupted PNA formation but also reduced NETs formation in the inflamed pancreas. NETs depleted of MPs had lower capacity to provoke amylase secretion and STAT-3 phosphorylation in acinar cells. Taurocholate-induced NETs formation, inflammation and tissue damage in the pancreas were decreased in IP6K1-deficient mice. Thrombin stimulation of mixtures of wild-type platelets and neutrophils resulted in NETs formation but not when IP6K1-deficient platelets were incubated with wild-type neutrophils. Polyphosphate rescue restored thrombin-induced NET formation in mixtures of IP6K1-deficient platelets and wild-type neutrophils. Platelet IP6K1 regulates NET-MP complex formation in the pancreas of mice during induction of AP. Targeting platelet IP6K1 might useful to decrease NET-dependent pancreatic tissue inflammation and tissue injury in patients with AP.

Authors

Raed Madhi, Milladur Rahman, Dler Taha, Johan Linders, Mohammed Merza, Yongzhi Wang, Matthias Mörgelin, Henrik Thorlacius

×

Transmission and clearance of potential procarcinogenic bacteria during fecal microbiota transplantation for recurrent Clostridioides difficile
Julia L. Drewes, Alina Corona, Uriel Sanchez, Yunfan Fan, Suchitra K. Hourigan, Melissa Weidner, Sarah D. Sidhu, Patricia J. Simner, Hao Wang, Winston Timp, Maria Oliva-Hemker, Cynthia L. Sears
Julia L. Drewes, Alina Corona, Uriel Sanchez, Yunfan Fan, Suchitra K. Hourigan, Melissa Weidner, Sarah D. Sidhu, Patricia J. Simner, Hao Wang, Winston Timp, Maria Oliva-Hemker, Cynthia L. Sears
View: Text | PDF

Transmission and clearance of potential procarcinogenic bacteria during fecal microbiota transplantation for recurrent Clostridioides difficile

  • Text
  • PDF
Abstract

BACKGROUND Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridioides difficile infection (rCDI) in adults and children, but donor stool samples are currently screened for only a limited number of potential pathogens. We sought to determine whether putative procarcinogenic bacteria (enterotoxigenic Bacteroides fragilis, Fusobacterium nucleatum, and Escherichia coli harboring the colibactin toxin) could be durably transmitted from donors to patients during FMT.METHODS Stool samples were collected from 11 pediatric rCDI patients and their respective FMT donors prior to FMT as well as from the patients at 2–10 weeks, 10–20 weeks, and 6 months after FMT. Bacterial virulence factors in stool DNA extracts and stool cultures were measured by quantitative PCR: Bacteroides fragilis toxin (bft), Fusobacterium adhesin A (fadA), and Escherichia coli colibactin (clbB).RESULTS Four of 11 patients demonstrated sustained acquisition of a procarcinogenic bacteria. Whole genome sequencing was performed on colony isolates from one of these donor/recipient pairs and demonstrated that clbB+ E. coli strains present in the recipient after FMT were identical to a strain present in the donor, confirming strain transmission. Conversely, 2 patients exhibited clearance of procarcinogenic bacteria following FMT from a negative donor.CONCLUSION Both durable transmission and clearance of procarcinogenic bacteria occurred following FMT, suggesting that additional studies on appropriate screening measures for FMT donors and the long-term consequences and/or benefits of FMT are warranted.FUNDING Crohn’s & Colitis Foundation, the Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, the National Cancer Institute, and the Canadian Institutes of Health Research.

Authors

Julia L. Drewes, Alina Corona, Uriel Sanchez, Yunfan Fan, Suchitra K. Hourigan, Melissa Weidner, Sarah D. Sidhu, Patricia J. Simner, Hao Wang, Winston Timp, Maria Oliva-Hemker, Cynthia L. Sears

×

Activation of pruritogenic TGR5, MRGPRA3, and MRGPRC11 on colon-innervating afferents induces visceral hypersensitivity
Joel Castro, Andrea M. Harrington, TinaMarie Lieu, Sonia Garcia-Caraballo, Jessica Maddern, Gudrun Schober, Tracey O'Donnell, Luke Grundy, Amanda L. Lumsden, Paul E. Miller, Andre Ghetti, Martin S. Steinhoff, Daniel P. Poole, Xinzhong Dong, Lin Chang, Nigel W. Bunnett, Stuart M. Brierley
Joel Castro, Andrea M. Harrington, TinaMarie Lieu, Sonia Garcia-Caraballo, Jessica Maddern, Gudrun Schober, Tracey O'Donnell, Luke Grundy, Amanda L. Lumsden, Paul E. Miller, Andre Ghetti, Martin S. Steinhoff, Daniel P. Poole, Xinzhong Dong, Lin Chang, Nigel W. Bunnett, Stuart M. Brierley
View: Text | PDF

Activation of pruritogenic TGR5, MRGPRA3, and MRGPRC11 on colon-innervating afferents induces visceral hypersensitivity

  • Text
  • PDF
Abstract

Itch induces scratching that removes irritants from the skin, whereas pain initiates withdrawal or avoidance of tissue damage. Whilst pain arises from both the skin and viscera, we investigated whether pruritogenic irritant mechanisms also function within visceral pathways. We show that subsets of colon-innervating sensory neurons in mice express, either individually or in combination, the pruritogenic receptors Tgr5 and the Mas-gene-related G protein-coupled receptors, Mrgpra3 and Mrgpra11. Agonists of these receptors activated subsets of colonic sensory neurons and evoked colonic afferent mechanical hypersensitivity via a TRPA1-dependent mechanism. In vivo intra-colonic administration of individual TGR5, MRGPRA3, or MRGPRC11 agonists induced pronounced visceral hypersensitivity to colorectal distension. Co-administration of these agonists as an ‘itch cocktail’ augmented hypersensitivity to colorectal distension and changed mouse behaviour. These irritant mechanisms were maintained and enhanced in a model of chronic visceral hypersensitivity relevant to irritable bowel syndrome. Neurons from human dorsal root ganglia also expressed TGR5 as well as the human ortholog MRGPRX1 and showed increased responsiveness to pruritogenic agonists in pathological states. These data support the existence of an irritant-sensing system in the colon that is a visceral representation of the itch pathways found in skin, thereby contributing to sensory disturbances accompanying common intestinal disorders.

Authors

Joel Castro, Andrea M. Harrington, TinaMarie Lieu, Sonia Garcia-Caraballo, Jessica Maddern, Gudrun Schober, Tracey O'Donnell, Luke Grundy, Amanda L. Lumsden, Paul E. Miller, Andre Ghetti, Martin S. Steinhoff, Daniel P. Poole, Xinzhong Dong, Lin Chang, Nigel W. Bunnett, Stuart M. Brierley

×
  • ← Previous
  • 1
  • 2
  • …
  • 13
  • 14
  • 15
  • …
  • 18
  • 19
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts