Sphingosine 1-phosphate (S1P) is a lysosphingolipid with antiatherogenic properties, but mechanisms underlying its effects remain unclear. We here investigated atherosclerosis development in cholesterol-rich diet–fed LDL receptor–deficient mice with high or low overexpression levels of S1P receptor 1 (S1P1) in macrophages. S1P1-overexpressing macrophages showed increased activity of transcription factors PU.1, interferon regulatory factor 8 (IRF8), and liver X receptor (LXR) and were skewed toward an M2-distinct phenotype characterized by enhanced production of IL-10, IL-1RA, and IL-5; increased ATP-binding cassette transporter A1– and G1–dependent cholesterol efflux; increased expression of MerTK and efferocytosis; and reduced apoptosis due to elevated B cell lymphoma 6 and Maf bZIP B. A similar macrophage phenotype was observed in mice administered S1P1-selective agonist KRP203. Mechanistically, the enhanced PU.1, IRF8, and LXR activity in S1P1-overexpressing macrophages led to downregulation of the cAMP-dependent PKA and activation of the signaling cascade encompassing protein kinases AKT and mTOR complex 1 as well as the late endosomal/lysosomal adaptor MAPK and mTOR activator 1. Atherosclerotic lesions in aortic roots and brachiocephalic arteries were profoundly or moderately reduced in mice with high and low S1P1 overexpression in macrophages, respectively. We conclude that S1P1 signaling polarizes macrophages toward an antiatherogenic functional phenotype and countervails the development of atherosclerosis in mice.
Francesco Potì, Enrica Scalera, Renata Feuerborn, Josephine Fischer, Lilli Arndt, Georg Varga, Evangelia Pardali, Matthias D. Seidl, Manfred Fobker, Gerhard Liebisch, Bettina Hesse, Alexander H. Lukasz, Jan Rossaint, Beate E. Kehrel, Frank Rosenbauer, Thomas Renné, Christina Christoffersen, Manuela Simoni, Ralph Burkhardt, Jerzy-Roch Nofer
Retinitis pigmentosa (RP) is a complex group of inherited retinal diseases characterized by progressive death of photoreceptor cells and eventual blindness. Pde6a, which encodes a cGMP-specific phosphodiesterase, is a crucial pathogenic gene for autosomal recessive RP (RP43); there is no effective therapy for this form of RP. The compact CRISPR/Staphylococcus aureus Cas9 (CRISPR/SaCas9) system, which can be packaged into a single adeno-associated virus (AAV), holds promise for simplifying effective gene therapy. Here, we demonstrated that all-in-one AAV-SaCas9–mediated Nrl gene inactivation can efficiently prevent retinal degeneration in a RP mouse model with Pde6anmf363/nmf363 mutation. We screened single-guide RNAs capable of efficiently editing the mouse Nrl gene in N2a cells and then achieved effective gene editing by using a single AAV to codeliver SaCas9 and an optimal Nrl-sg2 into the mouse retina. Excitingly, in vivo inactivation of Nrl improved photoreceptor cell survival and rescued retinal function in treated Pde6a-deficient mice. Thus, we showed that a practical, gene-independent method, AAV-SaCas9–mediated Nrl inactivation, holds promise for future therapeutic applications in patients with RP.
Zhiquan Liu, Siyu Chen, Chien-Hui Lo, Qing Wang, Yang Sun
Metabolic reprogramming is a common feature in tumor progression and metastasis. Like proteins, lipids can transduce signals through lipid-protein interactions. During tumor initiation and metastasis, dysregulation of the Hippo pathway plays a critical role. Specifically, the inhibition of YAP1 phosphorylation leads to the relocation of YAP1 to the nucleus to activate transcription of genes involved in metastasis. Although recent studies reveal the involvement of phosphatidylethanolamine (PE) synthesis enzyme phosphoethanolamine cytidylyltransferase 2 (PCYT2) in tumor chemoresistance, the effect of PCYT2 on tumor metastasis remains elusive. Here, we show that PCYT2 was significantly downregulated in metastatic colorectal cancer (CRC) and acted as a tumor metastasis suppressor. Mechanistically, PCYT2 increased the interaction between PEBP1 and YAP1–phosphatase PPP2R1A, thus disrupting PPP2R1A-YAP1 association. As a result, phosphorylated YAP1 levels were increased, leading to YAP1 degradation through the ubiquitin protease pathway. YAP1 reduction in the nucleus repressed the transcription of ZEB1 and SNAIL2, eventually resulting in metastasis suppression. Our work provides insight into the role of PE synthesis in regulating metastasis and presents PCYT2 as a potential therapeutic target for CRC.
Lian Zhou, Su Zhang, Lingli Wang, Xueqin Liu, Xuyang Yang, Lei Qiu, Ying Zhou, Qing Huang, Yang Meng, Xue Lei, Linda Wen, Junhong Han
Patients with immune-mediated inflammatory diseases (IMIDs) like rheumatoid arthritis (RA) are at higher risk for severe COVID-19 and long-term complications in bone health. Emerging clinical evidence demonstrated that SARS-CoV-2 infection reduces bone turnover and promotes bone loss, but the mechanism underlying worsened bone health remains elusive. This study sought to identify specific immune mediators that exacerbated preexisting IMIDs after SARS-CoV-2 exposure. Plasma samples from 4 groups were analyzed: healthy, IMID only, COVID-19 only, and COVID-19 + IMID. Using high-throughput multiplexed proteomics, we profiled 1,500 protein biomarkers and identified 148 unique biomarkers in COVID-19 patients with IMIDs, including elevated inflammatory cytokines (e.g., IL-17F) and bone resorption markers. Long-term circulating SARS-CoV-2 ORF8, a virulence factor for COVID-19, was detected in the COVID + IMID group. RA was one of the most common IMIDs in our study. ORF8 treatment of RA-derived human osteoblasts (RA-hOBs) increased levels of inflammatory (TNF, IL6, CCL2) and bone resorption (RANKL/osteoprotegerin ratio) markers compared with healthy controls. Supernatants from ORF8-treated RA-hOBs drove the differentiation of macrophages into osteoclast-like cells. These findings suggest that SARS-CoV-2 exposure can exacerbate IMIDs through ORF8-driven inflammation and osteoclastogenesis, highlighting potential therapeutic targets for managing COVID-19–induced bone pathologies.
Ivonne Melano, Tamiris Azamor, Camila C.S. Caetano, Nikki M. Meyer, Chineme Onwubueke, Anabelle Visperas, Débora Familiar-Macedo, Gielenny M. Salem, Brandy-Lee Soos, Cassandra M. Calabrese, Youn Jung Choi, Shuyang Chen, Younho Choi, Xianfang Wu, Zilton Vasconcelos, Suzy A.A. Comhair, Karin Nielsen-Saines, Leonard H. Calabrese, M. Elaine Husni, Jae U. Jung, Nicolas S. Piuzzi, Suan-Sin Foo, Weiqiang Chen
T cells are involved in protective immunity against numerous viral infections. Data regarding functional roles of human T cells in SARS-CoV-2 (SARS2) viral clearance in primary COVID-19 are limited. To address this knowledge gap, we assessed samples for associations between SARS2 upper respiratory tract viral RNA levels and early virus-specific adaptive immune responses for 95 unvaccinated clinical trial participants with acute primary COVID-19 aged 18–86 years old, approximately half of whom were considered at high risk for progression to severe COVID-19. Functionality and magnitude of acute SARS2-specific CD4+ and CD8+ T cell responses were evaluated, in addition to antibody responses. Most individuals with acute COVID-19 developed SARS2-specific T cell responses within 6 days of COVID-19 symptom onset. Early CD4+ T cell and CD8+ T cell responses were polyfunctional, and both strongly associated with reduced upper respiratory tract SARS2 viral RNA, independent of neutralizing antibody titers. Overall, these findings provide evidence for protective roles for circulating SARS2-specific CD4+ and CD8+ T cells during acute COVID-19.
Sydney I. Ramirez, Paul G. Lopez, Farhoud Faraji, Urvi M. Parikh, Amy Heaps, Justin Ritz, Carlee Moser, Joseph J. Eron, David Wohl, Judith Currier, Eric S. Daar, Alex Greninger, Paul Klekotka, Alba Grifoni, Daniela Weiskopf, Alessandro Sette, Bjoern Peters, Michael D. Hughes, Kara W. Chew, Davey M. Smith, Shane Crotty, for the Accelerating COVID-19 Therapeutic Interventions and Vaccines-2 (ACTIV-2)/A5401 Study Team
Despite recent advances in the treatment of thyroid eye disease thyroid-related eye disease (TED), marked gaps remain in our understanding of the underlying molecular mechanisms, particularly concerning the insulin-like growth factor-1 receptor (IGF-1R) pathway. To dissect the pathophysiology of TED, we used single-nucleus RNA-Seq to analyze orbital fat specimens from both patients with TED and matched individuals acting as controls. The analysis demonstrated a marked increase in the proportion of fibroblasts transitioning to adipogenesis in the orbital fat of patients with TED compared with that in control patients. This was associated with diverse alterations in immune cell composition. Significant alterations in the IGF-1R signaling pathway were noted between TED specimens and those from control patients, indicating a potential pathological mechanism driven by IGF-1R signaling abnormalities. Additionally, our data showed that linsitinib, a small-molecule inhibitor of IGF-1R, effectively reduced adipogenesis in TED orbital fibroblasts in vitro, suggesting its potential utility as a therapeutic agent. Our findings reveal that, beyond immune dysfunction, abnormal IGF-1R signaling leading to enhanced adipogenesis is a crucial pathogenic mechanism in TED.
Dong Won Kim, Soohyun Kim, Jeong Han, Karan Belday, Emily Li, Nicholas Mahoney, Seth Blackshaw, Fatemeh Rajaii
Deficits in IL-2 signaling can precipitate autoimmunity by altering the function and survival of FoxP3+ regulatory T cells (Tregs) while high concentrations of IL-2 fuel inflammatory responses. Recently, we showed that the non-beta IL-2 SYNTHORIN molecule SAR444336 (SAR’336) can bypass the induction of autoimmune and inflammatory responses by increasing its reliance on IL-2 receptor α chain subunit (CD25) to provide a bona fide IL-2 signal selectively to Tregs, making it an attractive approach for the control of autoimmunity. In this report, we further demonstrate that SAR’336 can support non-beta IL-2 signaling in murine Tregs and limit NK and CD8+ T cells’ proliferation and function. Using a murine model of spontaneous type 1 diabetes, we showed that the administration of SAR’336 slows the development of disease in mice by decreasing the degree of insulitis through the expansion of antigen-specific Tregs over Th1 cells in pancreatic islets. Specifically, SAR’336 promoted the differentiation of IL-33–responsive (ST2+), IL-10–producing GATA3+ Tregs over other Treg subsets in the pancreas, demonstrating the ability of this molecule to further orchestrate Treg adaptation. These results offer insight into the capacity of SAR’336 to generate highly specialized, tissue-localized Tregs that promote restoration of homeostasis during ongoing autoimmune disease.
Fernando Alvarez, Nicole V. Acuff, Glenn M. La Muraglia II, Nazila Sabri, Marcos E. Milla, Jill M. Mooney, Matthew F. Mackey, Mark Peakman, Ciriaco A. Piccirillo
KRAS mutations are frequent in various human cancers. The development of selective inhibitors targeting KRAS mutations has opened a new era for targeted therapy. However, intrinsic and acquired resistance to these inhibitors remains a major challenge. Here, we found that cancer cells resistant to KRAS G12C inhibitors also display cross-resistance to other targeted therapies, such as inhibitors of RTKs or SHP2. Transcriptomic analyses revealed that the Hippo-YAP/TAZ pathway is activated in intrinsically resistant and acquired-resistance cells. Constitutive activation of YAP/TAZ conferred resistance to KRAS G12C inhibitors, while knockdown of YAP/TAZ or TEADs sensitized resistant cells to these inhibitors. This scenario was also observed in KRAS G12D–mutant cancer cells. Mechanistically, YAP/TAZ protects cells from KRAS inhibitor–induced apoptosis by downregulating the expression of proapoptotic genes such as BMF, BCL2L11, and PUMA, and YAP/TAZ reverses KRAS inhibitor–induced proliferation retardation by activating the SLC7A5/mTORC1 axis. We further demonstrated that dasatinib and MYF-03-176 notably enhance the efficacy of KRAS inhibitors by reducing SRC kinase activity and TEAD activity. Overall, targeting the Hippo-YAP/TAZ pathway has the potential to overcome resistance to KRAS inhibitors.
Wang Yang, Ming Zhang, Tian-Xing Zhang, Jia-Hui Liu, Man-Wei Hao, Xu Yan, Haicheng Gao, Qun-Ying Lei, Jiuwei Cui, Xin Zhou
Osteosarcoma (OS) is the most common malignant bone tumor, characterized by a high propensity for metastasis. Recent studies have highlighted the role of alternative splicing in cancer metastasis, although the precise mechanisms underlying aberrant splicing in OS invasion and metastasis remain unclear. Here, we analyzed consistently differentially expressed genes and differentially alternative splicing events between primary and metastatic OS to identify potential genes associated with OS progression. U1 small nuclear ribonucleoprotein 70K (SNRNP70) emerged as both differentially expressed and spliced, with elevated SNRNP70 levels correlating with poor prognosis in pateints with OS. Functional experiments demonstrated that SNRNP70 overexpression enhanced the proliferation and metastasis of OS cells in vitro, while its depletion reduced these capabilities in vivo. Mechanistically, SNRNP70 directly interacted with CD55, modulating its alternative splicing and promoting tumor progression in OS. Additionally, metastatic OS samples exhibited increased infiltration of resting immune cells, and single-cell RNA sequencing revealed communication between SNRNP70-expressing osteoblastic cells and macrophages via the ADGRE5/CD55 signaling pathway. Overall, our results showed that SNRNP70 knockdown inhibited OS progression, which was associated with the splicing of CD55, indicating SNRNP70 as a promising target for OS treatment.
Wenyue Li, Linzhu Wang, Wen Tian, Weihang Ji, Danyang Bing, Yan Wang, Bingqian Xu, Jiayue Feng, Peng Zhang, Haihai Liang, Yunyan Gu, Baofeng Yang
Diabetic patients have increased susceptibility to acute kidney injury (AKI), and AKI could progress to chronic tubulointerstitial injury and fibrosis, referred to as AKI-to–chronic kidney disease (AKI-to-CKD) transition. However, whether diabetes directly promotes AKI-to-CKD transition is not known. We previously showed that reticulon-1A (RTN1A), a gene highly upregulated in injured renal tubular epithelial cells (RTECs), promotes AKI-to-CKD transition in nondiabetic settings. Therefore, we also examined whether reducing RTN1A expression could attenuate diabetes-induced AKI-to-CKD transition. Diabetes was induced by a high-fat diet and streptozotocin injections, and unilateral ischemic reperfusion injury was created as an AKI model in control, diabetic, and RTEC-specific Rtn1a-knockdown diabetic mice. AKI induced greater renal function decline, tubulointerstitial injury, and fibrosis in diabetic mice than in nondiabetic mice. Reduction of RTN1A markedly reduced the CKD development following AKI in diabetic mice, which was associated with reduced ER stress and mitochondrial dysfunction in RTECs. These findings indicate that diabetes markedly accelerates AKI-to-CKD transition and that RTN1A is a crucial mediator of diabetes-induced AKI-to-CKD transition. The development of RTN1A inhibitors could potentially attenuate AKI-to-CKD transition in diabetic patients.
Lulin Min, Ya Chen, Yixin Chen, Fang Zhong, Zhaohui Ni, Leyi Gu, Kyung Lee, John Cijiang He
No posts were found with this tag.