Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 4,127 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 51
  • 52
  • 53
  • …
  • 412
  • 413
  • Next →
Type 2 innate immunity promotes the development of pulmonary fibrosis in Hermansky-Pudlak syndrome
Parand Sorkhdini, Kiran Klubock-Shukla, Selena Sheth, Dongqin Yang, Alina Xiaoyu Yang, Carmelissa Norbrun, Wendy J. Introne, Bernadette R. Gochuico, Yang Zhou
Parand Sorkhdini, Kiran Klubock-Shukla, Selena Sheth, Dongqin Yang, Alina Xiaoyu Yang, Carmelissa Norbrun, Wendy J. Introne, Bernadette R. Gochuico, Yang Zhou
View: Text | PDF

Type 2 innate immunity promotes the development of pulmonary fibrosis in Hermansky-Pudlak syndrome

  • Text
  • PDF
Abstract

Hermansky-Pudlak syndrome (HPS), particularly types 1 and 4, is characterized by progressive pulmonary fibrosis, a major cause of morbidity and mortality. However, the precise mechanisms driving pulmonary fibrosis in HPS are not fully elucidated. Our previous studies suggested that CHI3L1-driven fibroproliferation may be a notable factor in HPS-associated fibrosis. This study aimed to explore the role of CHI3L1-CRTH2 interaction on type 2 innate lymphoid cells (ILC2s) and explored the potential contribution of ILC2-fibroblast crosstalk in the development of pulmonary fibrosis in HPS. We identified ILC2s in lung tissues from patients with idiopathic pulmonary fibrosis and HPS. Using bleomycin-challenged WT and Hps1–/– mice, we observed that ILC2s were recruited and appeared to contribute to fibrosis development in the Hps1–/– mice, with CRTH2 playing a notable role in ILC2 accumulation. We sorted ILC2s, profiled fibrosis-related genes and mediators, and conducted coculture experiments with primary lung ILC2s and fibroblasts. Our findings suggest that ILC2s may directly stimulate the proliferation and differentiation of primary lung fibroblasts partially through amphiregulin-EGFR–dependent mechanisms. Additionally, specific overexpression of CHI3L1 in the ILC2 population using the IL-7Rcre driver, which was associated with increased fibroproliferation, indicates that ILC2-mediated, CRTH2-dependent mechanisms might contribute to optimal CHI3L1-induced fibroproliferative repair in HPS-associated pulmonary fibrosis.

Authors

Parand Sorkhdini, Kiran Klubock-Shukla, Selena Sheth, Dongqin Yang, Alina Xiaoyu Yang, Carmelissa Norbrun, Wendy J. Introne, Bernadette R. Gochuico, Yang Zhou

×

Increased expression of cathepsin C in airway epithelia exacerbates airway remodeling in asthma
Lin Yuan, Qingwu Qin, Ye Yao, Long Chen, Huijun Liu, Xizi Du, Ming Ji, Xinyu Wu, Weijie Wang, Qiuyan Qin, Yang Xiang, Bei Qing, Xiangping Qu, Ming Yang, Xiaoqun Qin, Zhenkun Xia, Chi Liu
Lin Yuan, Qingwu Qin, Ye Yao, Long Chen, Huijun Liu, Xizi Du, Ming Ji, Xinyu Wu, Weijie Wang, Qiuyan Qin, Yang Xiang, Bei Qing, Xiangping Qu, Ming Yang, Xiaoqun Qin, Zhenkun Xia, Chi Liu
View: Text | PDF

Increased expression of cathepsin C in airway epithelia exacerbates airway remodeling in asthma

  • Text
  • PDF
Abstract

Airway remodeling is a critical factor determining the pathogenesis and treatment sensitivity of severe asthma (SA) or uncontrolled asthma (UA). The activation of epithelial-mesenchymal trophic units (EMTUs) regulated by airway epithelial cells (AECs) has been proven to induce airway remodeling directly. However, the triggers for EMTU activation and the underlying mechanism of airway remodeling are not fully elucidated. Here, we screened the differentially expressed gene cathepsin C (CTSC; also known as dipeptidyl peptidase 1 [DPP-1]) in epithelia of patients with SA and UA using RNA-sequencing data and further verified the increased expression of CTSC in induced sputum of patients with asthma, which was positively correlated with severity and airway remodeling. Moreover, direct instillation of exogenous CTSC induced airway remodeling. Genetic inhibition of CTSC suppressed EMTU activation and airway remodeling in two asthma models with airway remodeling. Mechanistically, increased secretion of CTSC from AECs induced EMTU activation through the p38-mediated pathway, further inducing airway remodeling. Meanwhile, inhibition of CTSC also reduced the infiltration of inflammatory cells and the production of inflammatory factors in the lungs of asthmatic mice. Consequently, targeting CTSC with compound AZD7986 protected against airway inflammation, EMTU activation, and remodeling in the asthma model. Based on the dual effects of CTSC on airway inflammation and remodeling, CTSC is a potential biomarker and therapeutic target for SA or UA.

Authors

Lin Yuan, Qingwu Qin, Ye Yao, Long Chen, Huijun Liu, Xizi Du, Ming Ji, Xinyu Wu, Weijie Wang, Qiuyan Qin, Yang Xiang, Bei Qing, Xiangping Qu, Ming Yang, Xiaoqun Qin, Zhenkun Xia, Chi Liu

×

Molecular basis of cell membrane adaptation in daptomycin-resistant Enterococcus faecalis
April H. Nguyen, Truc T. Tran, Diana Panesso, Kara S. Hood, Vinathi Polamraju, Rutan Zhang, Ayesha Khan, William R. Miller, Eugenia Mileykovskaya, Yousif Shamoo, Libin Xu, Heidi Vitrac, Cesar A. Arias
April H. Nguyen, Truc T. Tran, Diana Panesso, Kara S. Hood, Vinathi Polamraju, Rutan Zhang, Ayesha Khan, William R. Miller, Eugenia Mileykovskaya, Yousif Shamoo, Libin Xu, Heidi Vitrac, Cesar A. Arias
View: Text | PDF

Molecular basis of cell membrane adaptation in daptomycin-resistant Enterococcus faecalis

  • Text
  • PDF
Abstract

Daptomycin is a last-resort lipopeptide antibiotic that disrupts cell membrane (CM) and peptidoglycan homeostasis. Enterococcus faecalis has developed a sophisticated mechanism to avoid daptomycin killing by redistributing CM anionic phospholipids away from the septum. The CM changes are orchestrated by a 3-component regulatory system, designated LiaFSR, with a possible contribution of cardiolipin synthase (Cls). However, the mechanism by which LiaFSR controls the CM response and the role of Cls are unknown. Here, we show that cardiolipin synthase activity is essential for anionic phospholipid redistribution and daptomycin resistance since deletion of the 2 genes (cls1 and cls2) encoding Cls abolished CM remodeling. We identified LiaY, a transmembrane protein regulated by LiaFSR, and Cls1 as important mediators of CM remodeling required for redistribution of anionic phospholipid microdomains. Together, our insights provide a mechanistic framework on the enterococcal response to cell envelope antibiotics that could be exploited therapeutically.

Authors

April H. Nguyen, Truc T. Tran, Diana Panesso, Kara S. Hood, Vinathi Polamraju, Rutan Zhang, Ayesha Khan, William R. Miller, Eugenia Mileykovskaya, Yousif Shamoo, Libin Xu, Heidi Vitrac, Cesar A. Arias

×

Giantin mediates Golgi localization of Gal3-O-sulfotransferases and affects salivary mucin sulfation in patients with Sjögren’s disease
Matilde Nuñez, Patricia Carvajal, Sergio Aguilera, María-José Barrera, Soledad Matus, Alicia Couto, Malena Landoni, Gaelle Boncompain, Sergio González, Claudio Molina, Karina Pino, Sebastián Indo, Lourdes Figueroa, María-Julieta González, Isabel Castro
Matilde Nuñez, Patricia Carvajal, Sergio Aguilera, María-José Barrera, Soledad Matus, Alicia Couto, Malena Landoni, Gaelle Boncompain, Sergio González, Claudio Molina, Karina Pino, Sebastián Indo, Lourdes Figueroa, María-Julieta González, Isabel Castro
View: Text | PDF

Giantin mediates Golgi localization of Gal3-O-sulfotransferases and affects salivary mucin sulfation in patients with Sjögren’s disease

  • Text
  • PDF
Abstract

Sjögren’s disease is a chronic autoimmune disease characterized by symptoms of oral and ocular dryness and extraglandular manifestations. Mouth dryness is not only due to reduced saliva volume, but also to alterations in the quality of salivary mucins in patients with Sjögren’s disease. Mucins play a leading role in mucosa hydration and protection, where sulfated and sialylated oligosaccharides retain water molecules at the epithelial surface. The correct localization of glycosyltransferases and sulfotransferases within the Golgi apparatus determines adequate O-glycosylation and sulfation of mucins, which depends on specific golgins that tether enzyme-bearing vesicles. Here, we show that a golgin called Giantin was mislocalized in salivary glands from patients with Sjögren’s disease and formed protein complexes with Gal3-O-sulfotransferases (Gal3STs), which changed their localization in Giantin-knockout and -knockdown cells. Our results suggest that Giantin could tether Gal3ST-bearing vesicles and that its altered localization could affect Gal3ST activity, explaining the decreased sulfation of MUC5B observed in salivary glands from patients with Sjögren’s disease.

Authors

Matilde Nuñez, Patricia Carvajal, Sergio Aguilera, María-José Barrera, Soledad Matus, Alicia Couto, Malena Landoni, Gaelle Boncompain, Sergio González, Claudio Molina, Karina Pino, Sebastián Indo, Lourdes Figueroa, María-Julieta González, Isabel Castro

×

Loss of PADI2 and PADI4 ameliorates sepsis-induced acute lung injury by suppressing NLRP3+ macrophages
Xin Yu, Yujing Song, Tao Dong, Wenlu Ouyang, Liujiazi Shao, Chao Quan, Kyung Eun Lee, Tao Tan, Allan Tsung, Katsuo Kurabayashi, Hasan B. Alam, Mao Zhang, Jianjie Ma, Yongqing Li
Xin Yu, Yujing Song, Tao Dong, Wenlu Ouyang, Liujiazi Shao, Chao Quan, Kyung Eun Lee, Tao Tan, Allan Tsung, Katsuo Kurabayashi, Hasan B. Alam, Mao Zhang, Jianjie Ma, Yongqing Li
View: Text | PDF

Loss of PADI2 and PADI4 ameliorates sepsis-induced acute lung injury by suppressing NLRP3+ macrophages

  • Text
  • PDF
Abstract

Sepsis-induced acute lung injury (ALI) is prevalent in patients with sepsis and has a high mortality rate. Peptidyl arginine deiminase 2 (PADI2) and PADI4 play crucial roles in mediating the host’s immune response in sepsis, but their specific functions remain unclear. Our study shows that Padi2–/– Padi4–/– double KO (DKO) improved survival, reduced lung injury, and decreased bacterial load in Pseudomonas aeruginosa (PA) pneumonia–induced sepsis mice. Using single-cell RNA-Seq (scRNA-Seq), we found that the deletion of Padi2 and Padi4 reduced the Nlrp3+ proinflammatory macrophages and fostered Chil3+ myeloid cell differentiation into antiinflammatory macrophages. Additionally, we observed the regulatory role of the NLRP3/Ym1 axis upon DKO, confirmed by Chil3 knockdown and Nlrp3-KO experiments. Thus, eliminating Padi2 and Padi4 enhanced the polarization of Ym1+ M2 macrophages by suppressing NLRP3, aiding in inflammation resolution and lung tissue repair. This study unveils the PADIs/NLRP3/Ym1 pathway as a potential target in treatment of sepsis-induced ALI.

Authors

Xin Yu, Yujing Song, Tao Dong, Wenlu Ouyang, Liujiazi Shao, Chao Quan, Kyung Eun Lee, Tao Tan, Allan Tsung, Katsuo Kurabayashi, Hasan B. Alam, Mao Zhang, Jianjie Ma, Yongqing Li

×

Neutrophils in nasal polyps exhibit transcriptional adaptation and proinflammatory roles that depend on local polyp milieu
Chen Zhang, Qianqian Zhang, Jiani Chen, Han Li, Fuying Cheng, Yizhang Wang, Yingqi Gao, Yumin Zhou, Le Shi, Yufei Yang, Juan Liu, Kai Xue, Yaguang Zhang, Hongmeng Yu, Dehui Wang, Li Hu, Huan Wang, Xicai Sun
Chen Zhang, Qianqian Zhang, Jiani Chen, Han Li, Fuying Cheng, Yizhang Wang, Yingqi Gao, Yumin Zhou, Le Shi, Yufei Yang, Juan Liu, Kai Xue, Yaguang Zhang, Hongmeng Yu, Dehui Wang, Li Hu, Huan Wang, Xicai Sun
View: Text | PDF

Neutrophils in nasal polyps exhibit transcriptional adaptation and proinflammatory roles that depend on local polyp milieu

  • Text
  • PDF
Abstract

Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory upper airway disease, divided into eosinophilic CRSwNP (eCRSwNP) and noneosinophilic CRSwNP (neCRSwNP) according to eosinophilic levels. Neutrophils are major effector cells in CRSwNP, but their roles in different inflammatory environments remain largely unclear. We performed an integrated transcriptome analysis of polyp-infiltrating neutrophils from patients with CRSwNP, using healthy donor blood as a control. Additional experiments, including flow cytometry and in vitro epithelial cell and fibroblast culture, were performed to evaluate the phenotypic feature and functional role of neutrophils in CRSwNP. Single-cell RNA-sequencing analysis demonstrated that neutrophils could be classified into 5 functional subsets, with GBP5+ neutrophils occurring mainly in neCRSwNP and a high proportion of CXCL8+ neutrophils in both subendotypes. GBP5+ neutrophils exhibited significant IFN-I pathway activity in neCRSwNP. CXCL8+ neutrophils displayed increased neutrophil activation scores and mainly secreted oncostatin M (OSM), which facilitates communication with other cells. In vitro experiments showed that OSM enhanced IL-13– or IL-17–mediated immune responses in nasal epithelial cells and fibroblasts. Our findings indicate that neutrophils display transcriptional plasticity and activation when exposed to polyp tissue, contributing to CRSwNP pathogenesis by releasing OSM, which interacts with epithelial cells and fibroblasts depending on the inflammatory environment.

Authors

Chen Zhang, Qianqian Zhang, Jiani Chen, Han Li, Fuying Cheng, Yizhang Wang, Yingqi Gao, Yumin Zhou, Le Shi, Yufei Yang, Juan Liu, Kai Xue, Yaguang Zhang, Hongmeng Yu, Dehui Wang, Li Hu, Huan Wang, Xicai Sun

×

HIV-1 latency reversal agent boosting is not limited by opioid use
Tyler Lilie, Jennifer Bouzy, Archana Asundi, Jessica Taylor, Samantha Roche, Alex Olson, Kendyll Coxen, Heather Corry, Hannah Jordan, Kiera Clayton, Nina Lin, Athe Tsibris
Tyler Lilie, Jennifer Bouzy, Archana Asundi, Jessica Taylor, Samantha Roche, Alex Olson, Kendyll Coxen, Heather Corry, Hannah Jordan, Kiera Clayton, Nina Lin, Athe Tsibris
View: Text | PDF

HIV-1 latency reversal agent boosting is not limited by opioid use

  • Text
  • PDF
Abstract

Opioid use may affect the HIV-1 reservoir and its reversal from latency. We studied 47 virally suppressed people with HIV (PWH) and observed that lower concentration of HIV-1 latency reversal agents (LRAs), used with small molecules that did not reverse latency, synergistically increased the magnitude of HIV-1 reactivation ex vivo, regardless of opioid use. This LRA boosting, which combined a second mitochondria-derived activator of caspases mimetic or low-dose PKC agonist with histone deacetylase inhibitors, generated more unspliced HIV-1 transcription than PMA with ionomycin (PMAi), the maximal known HIV-1 reactivator. LRA boosting associated with greater histone acetylation, modulated surface activation-induced markers, and altered T cell production of TNF-α, IL-2, and IFN-γ. HIV-1 reservoirs in PWH contained unspliced and polyadenylated virus mRNA, the ratios of which were greater in resting than total CD4+ T cells and corrected to 1:1 with PMAi exposure. We characterized treated suppressed HIV-1 infection as a period of inefficient, not absent, virus transcription. Multiply spliced HIV-1 transcripts and virion production did not consistently increase with LRA boosting, suggesting the presence of a persistent posttranscriptional block. LRA boosting can be leveraged to probe mechanisms of an effective cellular HIV-1 latency reversal program.

Authors

Tyler Lilie, Jennifer Bouzy, Archana Asundi, Jessica Taylor, Samantha Roche, Alex Olson, Kendyll Coxen, Heather Corry, Hannah Jordan, Kiera Clayton, Nina Lin, Athe Tsibris

×

Targeted Bmal1 restoration in muscle prolongs lifespan with systemic health effects in aging model
Miguel A. Gutierrez-Monreal, Christopher A. Wolff, Eduardo E. Rijos, Mark R. Viggars, Collin M. Douglas, Vishwajeeth Pagala, Junmin Peng, Liam C. Hunt, Haocheng Ding, Zhiguang Huo, Fabio Demontis, Karyn A. Esser
Miguel A. Gutierrez-Monreal, Christopher A. Wolff, Eduardo E. Rijos, Mark R. Viggars, Collin M. Douglas, Vishwajeeth Pagala, Junmin Peng, Liam C. Hunt, Haocheng Ding, Zhiguang Huo, Fabio Demontis, Karyn A. Esser
View: Text | PDF

Targeted Bmal1 restoration in muscle prolongs lifespan with systemic health effects in aging model

  • Text
  • PDF
Abstract

Disruption of the circadian clock in skeletal muscle worsens local and systemic health, leading to decreased muscle strength, metabolic dysfunction, and aging-like phenotypes. Whole-body knockout mice that lack Bmal1, a key component of the molecular clock, display premature aging. Here, by using adeno-associated viruses, we rescued Bmal1 expression specifically in the skeletal muscle fibers of Bmal1-KO mice and found that this engaged the circadian clock and clock output gene expression, contributing to extended lifespan. Time course phenotypic analyses found that muscle strength, mobility, and glucose tolerance were improved with no effects on muscle mass or fiber size or type. A multiomics approach at 2 ages further determined that restored muscle Bmal1 improved glucose handling pathways while concomitantly reducing lipid and protein metabolic pathways. The improved glucose tolerance and metabolic flexibility resulted in the systemic reduction of inflammatory signatures across peripheral tissues, including liver, lung, and white adipose fat. Together, these findings highlight the critical role of muscle Bmal1 and downstream target genes for skeletal muscle homeostasis with considerable implications for systemic health.

Authors

Miguel A. Gutierrez-Monreal, Christopher A. Wolff, Eduardo E. Rijos, Mark R. Viggars, Collin M. Douglas, Vishwajeeth Pagala, Junmin Peng, Liam C. Hunt, Haocheng Ding, Zhiguang Huo, Fabio Demontis, Karyn A. Esser

×

Cell cycle inhibitors activate the hypoxia-induced DDX41/STING pathway to mediate antitumor immune response in liver cancer
Po Yee Wong, Cerise Yuen Ki Chan, Helen Do Gai Xue, Chi Ching Goh, Jacinth Wing Sum Cheu, Aki Pui Wah Tse, Misty Shuo Zhang, Yan Zhang, Carmen Chak Lui Wong
Po Yee Wong, Cerise Yuen Ki Chan, Helen Do Gai Xue, Chi Ching Goh, Jacinth Wing Sum Cheu, Aki Pui Wah Tse, Misty Shuo Zhang, Yan Zhang, Carmen Chak Lui Wong
View: Text | PDF

Cell cycle inhibitors activate the hypoxia-induced DDX41/STING pathway to mediate antitumor immune response in liver cancer

  • Text
  • PDF
Abstract

Cell cycle inhibitors have a long history as cancer treatment. Here, we report that these inhibitors combated cancer partially via the stimulator of IFN genes (STING) signaling pathway. We demonstrated that paclitaxel (microtubule stabilizer), palbociclib (cyclin-dependent kinase 4/6 inhibitor), and AZD1152 and GSK1070916 (aurora kinase B inhibitors) have anticancer functions beyond arresting the cell cycle. They consistently caused cytosolic DNA accumulation and DNA damage, which inadvertently triggered the cytosolic DNA sensor DEAD-box helicase 41 (DDX41) and activated STING to secrete pro-inflammatory senescence-associated secretory phenotype factors (SASPs). Interestingly, we found that DDX41 was a transcriptional target of HIF. Hypoxia induced expression of DDX41 through HIF-1, making hypoxic hepatocellular carcinoma (HCC) cells more sensitive to the antimitotic agents in STING activation and SASP production. The SASPs triggered immune cell infiltration in tumors for cancer clearance. The treatment with cell cycle inhibitors, especially paclitaxel, extended survival by perturbing mouse HCC growth when used in combination with anti–PD-1. We observed a trend that paclitaxel suppressed Sting wild-type HCC more effectively than Sting-KO HCC, suggesting that STING might contribute to the antitumor effects of paclitaxel. Our study revealed the immune-mediated tumor-suppressing properties of cell cycle inhibitors and suggested combined treatment with immunotherapy as a potential therapeutic approach.

Authors

Po Yee Wong, Cerise Yuen Ki Chan, Helen Do Gai Xue, Chi Ching Goh, Jacinth Wing Sum Cheu, Aki Pui Wah Tse, Misty Shuo Zhang, Yan Zhang, Carmen Chak Lui Wong

×

STARD7 maintains intestinal epithelial mitochondria architecture, barrier integrity, and protection from colitis
Jazib Uddin, Ankit Sharma, David Wu, Sunil Tomar, Varsha Ganesan, Paula E. Reichel, Lakshmi Narasimha Rao Thota, Rodolfo I. Cabrera-Silva, Sahiti Marella, Gila Idelman, Hock L. Tay, Arturo Raya-Sandino, Mack B. Reynolds, Srikanth Elesela, Yael Haberman, Lee A. Denson, Charles A. Parkos, Mary X.D. O’Riordan, Nicholas W. Lukacs, David N. O’Dwyer, Senad Divanovic, Asma Nusrat, Timothy E. Weaver, Simon P. Hogan
Jazib Uddin, Ankit Sharma, David Wu, Sunil Tomar, Varsha Ganesan, Paula E. Reichel, Lakshmi Narasimha Rao Thota, Rodolfo I. Cabrera-Silva, Sahiti Marella, Gila Idelman, Hock L. Tay, Arturo Raya-Sandino, Mack B. Reynolds, Srikanth Elesela, Yael Haberman, Lee A. Denson, Charles A. Parkos, Mary X.D. O’Riordan, Nicholas W. Lukacs, David N. O’Dwyer, Senad Divanovic, Asma Nusrat, Timothy E. Weaver, Simon P. Hogan
View: Text | PDF

STARD7 maintains intestinal epithelial mitochondria architecture, barrier integrity, and protection from colitis

  • Text
  • PDF
Abstract

Susceptibility to inflammatory bowel diseases (IBDs), Crohn’s disease (CD), and ulcerative colitis (UC) is linked with loss of intestinal epithelial barrier integrity and mitochondria dysfunction. Steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain-containing protein 7 (STARD7) is a phosphatidylcholine-specific (PC-specific) lipid transfer protein that transports PC from the ER to the mitochondria, facilitating mitochondria membrane stabilization and respiration function. The aim of this study was to define the contribution of STARD7 in the regulation of the intestinal epithelial mitochondrial function and susceptibility to colitis. In silico analyses identified significantly reduced expression of STARD7 in patients with UC, which was associated with downregulation of metabolic function and a more severe disease phenotype. STARD7 was expressed in intestinal epithelial cells, and STARD7 knockdown resulted in deformed mitochondria and diminished aerobic respiration. Loss of mitochondria function was associated with reduced expression of tight junction proteins and loss of intestinal epithelial barrier integrity that could be recovered by AMPK activation. Stard7+/– mice were more susceptible to the development of DSS-induced and Il10–/– spontaneous models of colitis. STARD7 is critical for intestinal epithelial mitochondrial function and barrier integrity, and loss of STARD7 function increases susceptibility to IBD.

Authors

Jazib Uddin, Ankit Sharma, David Wu, Sunil Tomar, Varsha Ganesan, Paula E. Reichel, Lakshmi Narasimha Rao Thota, Rodolfo I. Cabrera-Silva, Sahiti Marella, Gila Idelman, Hock L. Tay, Arturo Raya-Sandino, Mack B. Reynolds, Srikanth Elesela, Yael Haberman, Lee A. Denson, Charles A. Parkos, Mary X.D. O’Riordan, Nicholas W. Lukacs, David N. O’Dwyer, Senad Divanovic, Asma Nusrat, Timothy E. Weaver, Simon P. Hogan

×
  • ← Previous
  • 1
  • 2
  • …
  • 51
  • 52
  • 53
  • …
  • 412
  • 413
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts