Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ–specific approaches to block immunopathology while avoiding global immune suppression.
Pedro Santos e Sousa, Séverine Ciré, Thomas Conlan, Laura Jardine, Claire Tkacz, Ivana R. Ferrer, Cara Lomas, Sophie Ward, Heather West, Simone Dertschnig, Sven Blobner, Terry K. Means, Stephen Henderson, Daniel H. Kaplan, Matthew Collin, Vincent Plagnol, Clare L. Bennett, Ronjon Chakraverty
In multiple sclerosis (MS), a demyelinating inflammatory disease of the CNS, and its animal model (experimental autoimmune encephalomyelitis; EAE), circulating immune cells gain access to the CNS across the blood-brain barrier to cause inflammation, myelin destruction, and neuronal damage. Here, we discovered that calnexin, an ER chaperone, is highly abundant in human brain endothelial cells of MS patients. Conversely, mice lacking calnexin exhibited resistance to EAE induction, no evidence of immune cell infiltration into the CNS, and no induction of inflammation markers within the CNS. Furthermore, calnexin deficiency in mice did not alter the development or function of the immune system. Instead, the loss of calnexin led to a defect in brain endothelial cell function that resulted in reduced T cell trafficking across the blood-brain barrier. These findings identify calnexin in brain endothelial cells as a potentially novel target for developing strategies aimed at managing or preventing the pathogenic cascade that drives neuroinflammation and destruction of the myelin sheath in MS.
Joanna Jung, Paul Eggleton, Alison Robinson, Jessica Wang, Nick Gutowski, Janet Holley, Jia Newcombe, Elzbieta Dudek, Amber M. Paul, Douglas Zochodne, Allison Kraus, Christopher Power, Luis B. Agellon, Marek Michalak
Insulin resistance is associated with increased incidence and enhanced progression of cancers. However, little is known about strategies that can effectively ameliorate insulin resistance and consequently halt cancer progression. Herein, we propose that the transcription factor Nrf2 (also known as Nfe2l2) may be such a target, given its central role in disease prevention. To this end, we developed a mouse that overexpresses the Notch intracellular domain in adipocytes (AdNICD), leading to lipodystrophy-induced severe insulin resistance and subsequent development of sarcomas, as a model reflecting that Notch signaling is deregulated in cancers and shows positive associations with insulin resistance and fatty liver disease in humans. Nrf2 pathway activation was achieved by knocking down Keap1, a repressor of Nrf2, in the AdNICD background. Constitutively enhanced Nrf2 signaling in this setting led to prevention of hepatic steatosis, dyslipidemia, and insulin resistance by repressing hepatic lipogenic pathways and restoration of the hepatic fatty acid profile to control levels. This protective effect of Nrf2 against diabetes extended to significant reduction and delay in sarcoma incidence and latency. Our study highlights that the Nrf2 pathway, which has been induced by small molecules in clinical trials, is a potential therapeutic target against insulin resistance and subsequent risk of cancer.
Dionysios V. Chartoumpekis, Yoko Yagishita, Marco Fazzari, Dushani L. Palliyaguru, Uma N.M. Rao, Apostolos Zaravinos, Nicholas K.H. Khoo, Francisco J. Schopfer, Kurt R. Weiss, George K. Michalopoulos, Ian Sipula, Robert M. O’Doherty, Thomas W. Kensler, Nobunao Wakabayashi
Premature infants are at high risk for developing bronchopulmonary dysplasia (BPD), characterized by chronic inflammation and inhibition of lung development, which we have recently identified as being modulated by microRNAs (miRNAs) and alterations in the airway microbiome. Exosomes and exosomal miRNAs may regulate cell differentiation and tissue and organ development. We discovered that tracheal aspirates from infants with severe BPD had increased numbers of, but smaller, exosomes compared with term controls. Similarly, bronchoalveolar lavage fluid from hyperoxia-exposed mice (an animal model of BPD) and supernatants from hyperoxia-exposed human bronchial epithelial cells (in vitro model of BPD) had increased exosomes compared with air controls. Next, in a prospective cohort study of tracheal aspirates obtained at birth from extremely preterm infants, utilizing independent discovery and validation cohorts, we identified unbiased exosomal miRNA signatures predictive of severe BPD. The strongest signal of reduced miR-876-3p in BPD-susceptible compared with BPD-resistant infants was confirmed in the animal model and in vitro models of BPD. In addition, based on our recent discovery of increased Proteobacteria in the airway microbiome being associated with BPD, we developed potentially novel in vivo and in vitro models for BPD combining Proteobacterial LPS and hyperoxia exposure. Addition of LPS led to a larger reduction in exosomal miR 876-3p in both hyperoxia and normoxia compared with hyperoxia alone, thus indicating a potential mechanism by which alterations in microbiota can suppress miR 876-3p. Gain of function of miR 876-3p improved the alveolar architecture in the in vivo BPD model, demonstrating a causal link between miR 876-3p and BPD. In summary, we provide evidence for the strong predictive biomarker potential of miR 876-3p in severe BPD. We also provide insights on the pathogenesis of neonatal lung disease, as modulated by hyperoxia and microbial product–induced changes in exosomal miRNA 876-3p, which could be targeted for future therapeutic development.
Charitharth Vivek Lal, Nelida Olave, Colm Travers, Gabriel Rezonzew, Kalsang Dolma, Alexandra Simpson, Brian Halloran, Zubair Aghai, Pragnya Das, Nirmal Sharma, Xin Xu, Kristopher Genschmer, Derek Russell, Tomasz Szul, Nengjun Yi, J. Edwin Blalock, Amit Gaggar, Vineet Bhandari, Namasivayam Ambalavanan
Proteoglycan accumulation is a hallmark of medial degeneration in thoracic aortic aneurysm and dissection (TAAD). Here, we defined the aortic proteoglycanome using mass spectrometry, and based on the findings, investigated the large aggregating proteoglycans aggrecan and versican in human ascending TAAD and a mouse model of severe Marfan syndrome. The aortic proteoglycanome comprises 20 proteoglycans including aggrecan and versican. Antibodies against these proteoglycans intensely stained medial degeneration lesions in TAAD, contrasting with modest intralamellar staining in controls. Aggrecan, but not versican, was increased in longitudinal analysis of Fbn1mgR/mgR aortas. TAAD and Fbn1mgR/mgR aortas had increased aggrecan and versican mRNAs, and reduced expression of a key proteoglycanase gene, ADAMTS5, was seen in TAAD. Fbn1mgR/mgR mice with ascending aortic dissection and/or rupture had dramatically increased aggrecan staining compared with mice without these complications. Thus, aggrecan and versican accumulation in ascending TAAD occurs via increased synthesis and/or reduced proteolytic turnover, and correlates with aortic dissection/rupture in Fbn1mgR/mgR mice. Tissue swelling imposed by aggrecan and versican is proposed to be profoundly deleterious to aortic wall mechanics and smooth muscle cell homeostasis, predisposing to type-A dissections. These proteoglycans provide potential biomarkers for refined risk stratification and timing of elective aortic aneurysm repair.
Frank S. Cikach, Christopher D. Koch, Timothy J. Mead, Josephine Galatioto, Belinda B. Willard, Kelly B. Emerton, Matthew J. Eagleton, Eugene H. Blackstone, Francesco Ramirez, Eric E. Roselli, Suneel S. Apte
Current obesity interventions suffer from lack of durable effects and undesirable complications. Fumagillin, an inhibitor of methionine aminopeptidase-2, causes weight loss by reducing food intake, but with effects on weight that are superior to pair-feeding. Here, we show that feeding of rats on a high-fat diet supplemented with fumagillin (HF/FG) suppresses the aggressive feeding observed in pair-fed controls (HF/PF) and alters expression of circadian genes relative to the HF/PF group. Multiple indices of reduced energy expenditure are observed in HF/FG but not HF/PF rats. HF/FG rats also exhibit changes in gut hormones linked to food intake, increased energy harvest by gut microbiota, and caloric spilling in the urine. Studies in gnotobiotic mice reveal that effects of fumagillin on energy expenditure but not feeding behavior may be mediated by the gut microbiota. In sum, fumagillin engages weight loss–inducing behavioral and physiologic circuits distinct from those activated by simple caloric restriction.
Jie An, Liping Wang, Michael L. Patnode, Vanessa K. Ridaura, Jonathan M. Haldeman, Robert D. Stevens, Olga Ilkayeva, James R. Bain, Michael J. Muehlbauer, Erin L. Glynn, Steven Thomas, Deborah Muoio, Scott A. Summers, James E. Vath, Thomas E. Hughes, Jeffrey I. Gordon, Christopher B. Newgard
Autoimmune-mediated destruction of pancreatic islet β cells results in type 1 diabetes (T1D). Serum islet autoantibodies usually develop in genetically susceptible individuals in early childhood before T1D onset, with multiple islet autoantibodies predicting diabetes development. However, most at-risk children remain islet-antibody negative, and no test currently identifies those likely to seroconvert. We sought a genomic signature predicting seroconversion risk by integrating longitudinal peripheral blood gene expression profiles collected in high-risk children included in the BABYDIET and DIPP cohorts, of whom 50 seroconverted. Subjects were followed for 10 years to determine time of seroconversion. Any cohort effect and the time of seroconversion were corrected to uncover genes differentially expressed (DE) in seroconverting children. Gene expression signatures associated with seroconversion were evident during the first year of life, with 67 DE genes identified in seroconverting children relative to those remaining antibody negative. These genes contribute to T cell–, DC-, and B cell–related immune responses. Near-birth expression of ADCY9, PTCH1, MEX3B, IL15RA, ZNF714, TENM1, and PLEKHA5, along with HLA risk score predicted seroconversion (AUC 0.85). The ubiquitin-proteasome pathway linked DE genes and T1D susceptibility genes. Therefore, a gene expression signature in infancy predicts risk of seroconversion. Ubiquitination may play a mechanistic role in diabetes progression.
Ahmed M. Mehdi, Emma E. Hamilton-Williams, Alexandre Cristino, Anette Ziegler, Ezio Bonifacio, Kim-Anh Le Cao, Mark Harris, Ranjeny Thomas
Although accumulation of lymphocytes in the white adipose tissue (WAT) in obesity is linked to insulin resistance, it remains unclear whether lymphocytes also participate in the regulation of energy homeostasis in the WAT. Here, we demonstrate enhanced energy dissipation in Rag1–/– mice, increased catecholaminergic input to subcutaneous WAT, and significant beige adipogenesis. Adoptive transfer experiments demonstrated that CD8+ T cell deficiency accounts for the enhanced beige adipogenesis in Rag1–/– mice. Consistently, we identified that CD8–/– mice also presented with enhanced beige adipogenesis. The inhibitory effect of CD8+ T cells on beige adipogenesis was reversed by blockade of IFN-γ. All together, our findings identify an effect of CD8+ T cells in regulating energy dissipation in lean WAT, mediated by IFN-γ modulation of the abundance of resident immune cells and of local catecholaminergic activity. Our results provide a plausible explanation for the clinical signs of metabolic dysfunction in diseases characterized by altered CD8+ T cell abundance and suggest targeting of CD8+ T cells as a promising therapeutic approach for obesity and other diseases with altered energy homeostasis.
Maria Moysidou, Sevasti Karaliota, Elisavet Kodela, Maria Salagianni, Yassemi Koutmani, Antonia Katsouda, Konstantia Kodella, Panagiotis Tsakanikas, Styliani Ourailidou, Evangelos Andreakos, Nikolaos Kostomitsopoulos, Dimitris Skokos, Antonios Chatzigeorgiou, Kyoung-Jin Chung, Stefan Bornstein, Mark W. Sleeman, Triantafyllos Chavakis, Katia P. Karalis
B cells play a central role in systemic lupus erythematosus (SLE) pathophysiology but dysregulated pathways leading to a break in B cell tolerance remain unclear. Since Toll-like receptor 9 (TLR9) favors the elimination of autoreactive B cells in the periphery, we assessed TLR9 function in SLE by analyzing the responses of B cells and plasmacytoid dendritic cells (pDCs) isolated from healthy donors and patients after stimulation with CpG, a TLR9 agonist. We found that SLE B cells from patients without hydroxychloroquine treatment displayed defective in vitro TLR9 responses, as illustrated by the impaired upregulation of B cell activation molecules and the diminished production of various cytokines including antiinflammatory IL-10. In agreement with CD19 controlling TLR9 responses in B cells, decreased expression of the CD19/CD21 complex on SLE B cells was detected as early as the transitional B cell stage. In contrast, TLR7 function was preserved in SLE B cells, whereas pDCs from SLE patients properly responded to TLR9 stimulation, thereby revealing that impaired TLR9 function in SLE was restricted to B cells. We conclude that abnormal CD19 expression and TLR9 tolerogenic function in SLE B cells may contribute to the break of B cell tolerance in these patients.
Vincent Gies, Jean-Nicolas Schickel, Sophie Jung, Aurélie Joublin, Salomé Glauzy, Anne-Marie Knapp, Anne Soley, Vincent Poindron, Aurélien Guffroy, Jin-Young Choi, Jacques-Eric Gottenberg, Jennifer H. Anolik, Thierry Martin, Pauline Soulas-Sprauel, Eric Meffre, Anne-Sophie Korganow
Adoptive T cell therapy (ACT) is a promising new modality for malignancies. Here, we report that adoptive T cell efficacy in tumor-bearing mice is significantly affected by differences in the native composition of the gut microbiome or treatment with antibiotics, or by heterologous fecal transfer. Depletion of bacteria with vancomycin decreased the rate of tumor growth in mice from The Jackson Laboratory receiving ACT, whereas treatment with neomycin and metronidazole had no effect, indicating the role of specific bacteria in host response. Vancomycin treatment induced an increase in systemic CD8α+ DCs, which sustained systemic adoptively transferred antitumor T cells in an IL-12–dependent manner. In subjects undergoing allogeneic hematopoietic cell transplantation, we found that oral vancomycin also increased IL-12 levels. Collectively, our findings demonstrate an important role played by the gut microbiota in the antitumor effectiveness of ACT and suggest potentially new avenues to improve response to ACT by altering the gut microbiota.
Mireia Uribe-Herranz, Kyle Bittinger, Stavros Rafail, Sonia Guedan, Stefano Pierini, Ceylan Tanes, Alex Ganetsky, Mark A. Morgan, Saar Gill, Janos L. Tanyi, Frederic D. Bushman, Carl H. June, Andrea Facciabene
No posts were found with this tag.