With the increase in obesity worldwide, its associated comorbidities, including nonalcoholic steatohepatitis (NASH), have become a public health problem that still lacks effective therapy. We have previously reported that mixed-lineage kinase 3–deficient (MLK3-deficient) mice are protected against diet-induced NASH. Given the critical need to identify new therapeutic agents, we sought to examine whether the small-molecule MLK3 inhibitor URMC099 would be effective in reversing diet-induced murine NASH. C57BL/6J mice were fed either a diet high in saturated fat, fructose, and cholesterol (FFC), or a chow diet for 24 weeks. Mice were treated with either URMC099 (10 mg/kg) twice daily by intraperitoneal injection or its vehicle during the last 2 weeks of the feeding study. FFC-fed mice receiving URMC099 had similar body weight, caloric intake, homeostatic model assessment of insulin resistance, metabolic phenotype, and hepatic steatosis compared with vehicle-treated mice. Furthermore, FFC-fed mice treated with URMC099 had less hepatic macrophage infiltration, activation, and proinflammatory polarization, as well as less liver injury and fibrosis when compared with vehicle-treated mice. In conclusion, URMC099 is well tolerated in mice without obvious toxicities and appears to be efficacious in reversing diet-induced NASH. Hence, URMC099 may serve as a therapeutic agent in human NASH.
Kyoko Tomita, Rohit Kohli, Brittany L. MacLaurin, Petra Hirsova, Qianqian Guo, Luz H. Gutierrez Sanchez, Harris A. Gelbard, Burns C. Blaxall, Samar H. Ibrahim
The tumor suppressor PTEN is frequently inactivated in breast and other cancers; yet, germ-line mutations in this gene induce nonmalignant hamartomas, indicating dependency on additional cooperating events. Here we show that most tumors derived from conditional deletion of mouse pten in mammary epithelium are highly differentiated and lack transplantable tumor-initiating cells (TICs) capable of seeding new tumors following orthotopic injection of FACS-sorted or tumorsphere cells. A rare group of poorly differentiated tumors did harbor transplantable TICs. These transplantable tumors exhibited distinct molecular classification, signaling pathways, chromosomal aberrations, and mutational landscape, as well as reduced expression of microRNA-143/145 (miR-143/145). Stable knockdown of miR-143/145 conferred tumorigenic potential upon poorly transplantable pten-deficient tumor cells through a mechanism involving induction of RAS signaling, leading to increased sensitivity to MEK inhibition. In humans, miR-145 deficiency significantly correlated with elevated RAS-pathway activity in basal-like breast cancer, and patients with combined PTEN/miR-145 loss or PTEN-loss/high RAS-pathway activity exhibited poor clinical outcome. These results underscore a selective pressure for combined PTEN loss together with RAS-pathway activation, either through miR-145 loss or other mechanisms, in basal-like breast cancer, and a need to identify and prioritize these tumors for aggressive therapy.
Sharon Wang, Jeff C. Liu, YoungJun Ju, Giovanna Pellecchia, Veronique Voisin, Dong-Yu Wang, Rajwinder Leha l, Yaacov Ben-David, Gary D. Bader, Eldad Zacksenhaus
Sierra Leone was the most severely affected country in Western Africa during the 2013–2016 outbreak of Ebola virus disease (EVD). Previous genome surveillance studies have revealed the origin, diversity, and evolutionary dynamics of the Ebola virus (EBOV); however, the information regarding EBOV sequences is insufficient, especially the clinical outcomes, given that the correlation between the clinical outcomes and the genetic evolution of EBOV is still not clear. Here, we collected and curated a comprehensive data set that includes 514 EBOV genome sequences from patients with confirmed EVD (including 60 sequences not previously studied), >87.5% of which have residence information and definitive clinical outcomes. Phylogenetic reconstruction revealed 11 lineages of EBOV in Sierra Leone. The median-joining haplotype network showed that haplotypes that are associated with lethal outcomes tend to contribute more to the spread of the EBOV in Sierra Leone than those with live outcomes. Analyses of the spatial-temporal distribution unraveled the lineage-distinctive distribution patterns. Different viral lineages have different case fatality rates (CFRs) during the same stage of the outbreak, implying that several lineages featuring SNPs may correlate with increased/decreased CFRs. This study provides invaluable data sets of EBOV infection and highlights the potential SNPs for further in-depth investigation.
Tao Li, Hong-Wu Yao, Di Liu, Hong-Guang Ren, Yi Hu, David Kargbo, Yue Teng, Yong-Qiang Deng, Hui-Jun Lu, Xiong Liu, Kun Liu, Li-Qun Fang, Nian-Zhi Ning, Gary Wong, Foday Dafae, Abdul Kamara, AiPing Wu, Tai-Jiao Jiang, Zhan Li, Jie Huang, Yu Sun, Jun Qian, Brima Kargbo, Jia-Fu Jiang, Hui Wang, Wu-Chun Cao
Widespread changes in cardiac gene expression occur during heart failure, yet the mechanisms responsible for coordinating these changes remain poorly understood. The Mediator complex represents a nodal point for modulating transcription by bridging chromatin-bound transcription factors with RNA polymerase II activity; it is reversibly regulated by its cyclin-dependent kinase 8 (Cdk8) kinase submodule. Here, we identified increased Cdk8 protein expression in human failing heart explants and determined the consequence of this increase in cardiac-specific Cdk8-expressing mice. Transgenic Cdk8 overexpression resulted in progressive dilated cardiomyopathy, heart failure, and premature lethality. Prior to functional decline, left ventricular cardiomyocytes were dramatically elongated, with disorganized transverse tubules and dysfunctional calcium handling. RNA sequencing results showed that myofilament gene isoforms not typically expressed in adult cardiomyocytes were enriched, while oxidative phosphorylation and fatty acid biosynthesis genes were downregulated. Interestingly, candidate upstream transcription factor expression levels and MAPK signaling pathways thought to determine cardiomyocyte size remained relatively unaffected, suggesting that Cdk8 functions within a novel growth regulatory pathway. Our findings show that manipulating cardiac gene expression through increased Cdk8 levels is detrimental to the heart by establishing a transcriptional program that induces pathological remodeling and eccentric hypertrophy culminating in heart failure.
Duane D. Hall, Jessica M. Ponce, Biyi Chen, Kathryn M. Spitler, Adrianne Alexia, Gavin Y. Oudit, Long-Sheng Song, Chad E. Grueter
The increased heme biosynthesis long observed in leukemia was previously of unknown significance. Heme, synthesized from porphyrin precursors, plays a central role in oxygen metabolism and mitochondrial function, yet little is known about its role in leukemogenesis. Here, we show increased expression of heme biosynthetic genes, including UROD, only in pediatric AML samples that have high MYCN expression. High expression of both UROD and MYCN predicts poor overall survival and unfavorable outcomes in adult AML. Murine leukemic progenitors derived from hematopoietic progenitor cells (HPCs) overexpressing a MYCN cDNA (MYCN-HPCs) require heme/porphyrin biosynthesis, accompanied by increased oxygen consumption, to fully engage in self-renewal and oncogenic transformation. Blocking heme biosynthesis reduced mitochondrial oxygen consumption and markedly suppressed self-renewal. Leukemic progenitors rely on balanced production of heme and heme intermediates, the porphyrins. Porphyrin homeostasis is required because absence of the porphyrin exporter, ABCG2, increased death of leukemic progenitors in vitro and prolonged the survival of mice transplanted with Abcg2-KO MYCN-HPCs. Pediatric AML patients with elevated MYCN mRNA display strong activation of TP53 target genes. Abcg2-KO MYCN-HPCs were rescued from porphyrin toxicity by p53 loss. This vulnerability was exploited to show that treatment with a porphyrin precursor, coupled with the absence of ABCG2, blocked MYCN-driven leukemogenesis in vivo, thereby demonstrating that porphyrin homeostasis is a pathway crucial to MYCN leukemogenesis.
Yu Fukuda, Yao Wang, Shangli Lian, John Lynch, Shinjiro Nagai, Bruce Fanshawe, Ayten Kandilci, Laura J. Janke, Geoffrey Neale, Yiping Fan, Brian P. Sorrentino, Martine F. Roussel, Gerard Grosveld, John D. Schuetz
Among children with the most severe presentation of Marfan syndrome (MFS), an inherited disorder of connective tissue caused by a deficiency of extracellular fibrillin-1, heart failure is the leading cause of death. Here, we show that, while MFS mice (Fbn1C1039G/+ mice) typically have normal cardiac function, pressure overload (PO) induces an acute and severe dilated cardiomyopathy in association with fibrosis and myocyte enlargement. Failing MFS hearts show high expression of TGF-β ligands, with increased TGF-β signaling in both nonmyocytes and myocytes; pathologic ERK activation is restricted to the nonmyocyte compartment. Informatively, TGF-β, angiotensin II type 1 receptor (AT1R), or ERK antagonism (with neutralizing antibody, losartan, or MEK inhibitor, respectively) prevents load-induced cardiac decompensation in MFS mice, despite persistent PO. In situ analyses revealed an unanticipated axis of activation in nonmyocytes, with AT1R-dependent ERK activation driving TGF-β ligand expression that culminates in both autocrine and paracrine overdrive of TGF-β signaling. The full compensation seen in wild-type mice exposed to mild PO correlates with enhanced deposition of extracellular fibrillin-1. Taken together, these data suggest that fibrillin-1 contributes to cardiac reserve in the face of hemodynamic stress, critically implicate nonmyocytes in disease pathogenesis, and validate ERK as a therapeutic target in MFS-related cardiac decompensation.
Rosanne Rouf, Elena Gallo MacFarlane, Eiki Takimoto, Rahul Chaudhary, Varun Nagpal, Peter P. Rainer, Julia G. Bindman, Elizabeth E. Gerber, Djahida Bedja, Christopher Schiefer, Karen L. Miller, Guangshuo Zhu, Loretha Myers, Nuria Amat-Alarcon, Dong I. Lee, Norimichi Koitabashi, Daniel P. Judge, David A. Kass, Harry C. Dietz
The molecular bases for sex differences in cancer remain undefined and how to incorporate them into risk stratification remains undetermined. Given sex differences in metabolism and the inverse correlation between fluorodeoxyglucose (FDG) uptake and survival, we hypothesized that glycolytic phenotyping would improve glioma subtyping. Using retrospectively acquired lower-grade glioma (LGG) transcriptome data from The Cancer Genome Atlas (TCGA), we discovered male-specific decreased survival resulting from glycolytic gene overexpression. Patients within this high-glycolytic group showed significant differences in the presence of key genomic alterations (i.e., 1p/19q codeletion, CIC, EGFR, NF1, PTEN, FUBP1, and IDH mutations) compared with the low-glycolytic group. Although glycolytic stratification defined poor prognostic males independent of grade, histology, TP53, and ATRX mutation status, we unexpectedly found that females with high-glycolytic gene expression and wild-type IDH survived longer than all other wild-type patients. Validation with an independent metabolomics dataset from grade 2 gliomas determined that glycolytic metabolites selectively stratified males and also uncovered a potential sexual dimorphism in pyruvate metabolism. These findings identify a potential synergy between patient sex, tumor metabolism, and genomic alterations in determining outcome for glioma patients.
Joseph E. Ippolito, Aldrin Kay-Yuen Yim, Jingqin Luo, Prakash Chinnaiyan, Joshua B. Rubin
Organ-specific patterns of myeloid cells may contribute tissue-specific growth and/or regenerative potentials. The perinatal stage of pancreas development marks a time characterized by maximal proliferation of pancreatic islets, ensuring the maintenance of glucose homeostasis throughout life. Ontogenically distinct CX3CR1+ and CCR2+ macrophage populations have been reported in the adult pancreas, but their functional contribution to islet cell growth at birth remains unknown. Here, we uncovered a temporally restricted requirement for CCR2+ myeloid cells in the perinatal proliferation of the endocrine pancreatic epithelium. CCR2+ macrophages are transiently enriched over CX3CR1+ subsets in the neonatal pancreas through both local expansion and recruitment of immature precursors. Using CCR2-specific depletion models, we show that loss of this myeloid population leads to a striking reduction in β cell proliferation, dysfunctional islet phenotypes, and glucose intolerance in newborns. Replenishment of pancreatic CCR2+ myeloid compartments by adoptive transfer rescues these defects. Gene profiling identifies pancreatic CCR2+ myeloid cells as a prominent source of IGF2, which contributes to IGF1R-mediated islet proliferation. These findings uncover proproliferative functions of CCR2+ myeloid subsets and identify myeloid-dependent regulation of IGF signaling as a local cue supporting pancreatic proliferation.
Kristin Mussar, Stephanie Pardike, Tobias M. Hohl, Gary Hardiman, Vincenzo Cirulli, Laura Crisa
GPCR expression was intensively studied in bulk cDNA of leukocyte populations, but limited data are available with respect to expression in individual cells. Here, we show a microfluidic-based single-cell GPCR expression analysis in primary T cells, myeloid cells, and endothelial cells under naive conditions and during experimental autoimmune encephalomyelitis, the mouse model of multiple sclerosis. We found that neuroinflammation induces characteristic changes in GPCR heterogeneity and patterning, and we identify various functionally relevant subgroups with specific GPCR profiles among spinal cord–infiltrating CD4 T cells, macrophages, microglia, or endothelial cells. Using GPCRs CXCR4, S1P1, and LPHN2 as examples, we show how this information can be used to develop new strategies for the functional modulation of Th17 cells and activated endothelial cells. Taken together, single-cell GPCR expression analysis identifies functionally relevant subpopulations with specific GPCR repertoires and provides a basis for the development of new therapeutic strategies in immune disorders.
Denise Tischner, Myriam Grimm, Harmandeep Kaur, Daniel Staudenraus, Jorge Carvalho, Mario Looso, Stefan Günther, Florian Wanke, Sonja Moos, Nelly Siller, Johanna Breuer, Nicholas Schwab, Frauke Zipp, Ari Waisman, Florian C. Kurschus, Stefan Offermanns, Nina Wettschureck
Gut-associated lymphoid tissues are enriched in CCR6+ Th17-polarized CD4+ T cells that contribute to HIV-1 persistence during antiretroviral therapy (ART). This raises the need for Th17-targeted immunotherapies. In an effort to identify mechanisms governing HIV-1 permissiveness/persistence in gut-homing Th17 cells, we analyzed the transcriptome of CCR6+ versus CCR6– T cells exposed to the gut-homing inducer retinoic acid (RA) and performed functional validations in colon biopsies of HIV-infected individuals receiving ART (HIV+ART). Although both CCR6+ and CCR6– T cells acquired gut-homing markers upon RA exposure, the modulation of unique sets of genes coincided with preferential HIV-1 replication in RA-treated CCR6+ T cells. This molecular signature included the upregulation of HIV-dependency factors acting at entry/postentry levels, such as the CCR5 and PI3K/Akt/mTORC1 signaling pathways. Of note, mTOR expression/phosphorylation was distinctively induced by RA in CCR6+ T cells. Consistently, mTOR inhibitors counteracted the effect of RA on HIV replication in vitro and viral reactivation in CD4+ T cells from HIV+ART individuals via postentry mechanisms independent of CCR5. Finally, CCR6+ versus CCR6– T cells infiltrating the colons of HIV+ART individuals expressed unique molecular signatures, including higher levels of CCR5, integrin β7, and mTOR phosphorylation. Together, our results identify mTOR as a druggable key regulator of HIV permissiveness in gut-homing CCR6+ T cells.
Delphine Planas, Yuwei Zhang, Patricia Monteiro, Jean-Philippe Goulet, Annie Gosselin, Nathalie Grandvaux, Thomas J. Hope, Ariberto Fassati, Jean-Pierre Routy, Petronela Ancuta
No posts were found with this tag.