It is proposed that the impaired sympathoadrenal response to hypoglycemia induced by recurrent insulin-induced hypoglycemia (RH) is an adaptive phenomenon induced by specific changes in microRNA expression in the ventromedial hypothalamus (VMH). To test this hypothesis, genome-wide microRNAomic profiling of the VMH by RNA-sequencing was performed in control rats and rats treated for RH. Differential expression analysis identified microRNA-7a-5p and microRNA-665 as potential mediators of this phenomenon. To further test this hypothesis, experiments were conducted consisting of targeted lentiviral-mediated overexpression of microRNA-7a-5p and downregulation of microRNA-665 in the VMH. Hyperinsulinemic hypoglycemic clamp experiments demonstrated that targeted overexpression of microRNA-7a-5p (but not downregulation of microRNA-665) in the VMH of RH rats restored the epinephrine response to hypoglycemia. This restored response to hypoglycemia was associated with a restoration of GABAA receptor gene expression. Finally, a direct interaction of microRNA-7a-5p with the 3′-UTR of GABAA receptor α1-subunit (Gabra1) gene was demonstrated in a luciferase assay. These findings indicate that (a) the impaired sympathoadrenal response RH induces is associated with changes in VMH microRNA expression and (b) microRNA-7a-5p, possibly via direct downregulation of GABA receptor gene expression, may serve as a mediator of the altered sympathoadrenal response to hypoglycemia.
Rahul Agrawal, Griffin Durupt, Dinesh Verma, Michael Montgomery, Adriana Vieira-de Abreu, Casey Taylor, Sankar Swaminathan, Simon J. Fisher
Efferocytosis, or phagocytic clearance of dead/dying cells by brain-resident microglia and/or infiltrating macrophages, is instrumental for inflammation resolution and restoration of brain homeostasis after stroke. Here, we identify the signal transducer and activator of transcription 6/arginase1 (STAT6/Arg1) signaling axis as a potentially novel mechanism that orchestrates microglia/macrophage responses in the ischemic brain. Activation of STAT6 was observed in microglia/macrophages in the ischemic territory in a mouse model of stroke and in stroke patients. STAT6 deficiency resulted in reduced clearance of dead/dying neurons, increased inflammatory gene signature in microglia/macrophages, and enlarged infarct volume early after experimental stroke. All of these pathological changes culminated in an increased brain tissue loss and exacerbated long-term functional deficits. Combined in vivo analyses using BM chimeras and in vitro experiments using microglia/macrophage-neuron cocultures confirmed that STAT6 activation in both microglia and macrophages was essential for neuroprotection. Adoptive transfer of WT macrophages into STAT6-KO mice reduced accumulation of dead neurons in the ischemic territory and ameliorated brain infarction. Furthermore, decreased expression of Arg1 in STAT6–/– microglia/macrophages was responsible for impairments in efferocytosis and loss of antiinflammatory modality. Our study suggests that efferocytosis via STAT6/Arg1 modulates microglia/macrophage phenotype, accelerates inflammation resolution, and improves stroke outcomes.
Wei Cai, Xuejiao Dai, Jie Chen, Jingyan Zhao, Mingyue Xu, Lili Zhang, Boyu Yang, Wenting Zhang, Marcelo Rocha, Toshimasa Nakao, Julia Kofler, Yejie Shi, R. Anne Stetler, Xiaoming Hu, Jun Chen
Deterioration or inborn malformations of the cardiac conduction system (CCS) interfere with proper impulse propagation in the heart and may lead to sudden cardiac death or heart failure. Patients afflicted with arrhythmia depend on antiarrhythmic medication or invasive therapy, such as pacemaker implantation. An ideal way to treat these patients would be CCS tissue restoration. This, however, requires precise knowledge regarding the molecular mechanisms underlying CCS development. Here, we aimed to identify regulators of CCS development. We performed a compound screen in zebrafish embryos and identified tolterodine, a muscarinic receptor antagonist, as a modifier of CCS development. Tolterodine provoked a lower heart rate, pericardiac edema, and arrhythmia. Blockade of muscarinic M3, but not M2, receptors induced transcriptional changes leading to amplification of sinoatrial cells and loss of atrioventricular identity. Transcriptome data from an engineered human heart muscle model provided additional evidence for the contribution of muscarinic M3 receptors during cardiac progenitor specification and differentiation. Taken together, we found that muscarinic M3 receptors control the CCS already before the heart becomes innervated. Our data indicate that muscarinic receptors maintain a delicate balance between the developing sinoatrial node and the atrioventricular canal, which is probably required to prevent the development of arrhythmia.
Martina S. Burczyk, Martin D. Burkhalter, Teresa Casar Tena, Laurel A. Grisanti, Michael Kauk, Sabrina Matysik, Cornelia Donow, Monika Kustermann, Melanie Rothe, Yinghong Cui, Farah Raad, Svenja Laue, Allessandra Moretti, Wolfram-H. Zimmermann, Jürgen Wess, Michael Kühl, Carsten Hoffmann, Douglas G. Tilley, Melanie Philipp
There is increased interest in whether bariatric surgeries such as Roux-en-Y gastric bypass (RYGB) achieve their profound weight-lowering effects in morbidly obese individuals through the brain. Hypothalamic inflammation is a well-recognized etiologic factor in obesity pathogenesis and so represents a potential target of RYGB, but clinical evidence in support of this is limited. We therefore assessed hypothalamic T2-weighted signal intensities (T2W SI) and fractional anisotropy (FA) values, 2 validated radiologic measures of brain inflammation, in relation to BMI and fat mass, as well as circulating inflammatory (C-reactive protein; CrP) and metabolic markers in a cohort of 27 RYGB patients at baseline and 6 and 12 months after surgery. We found that RYGB progressively increased hypothalamic T2W SI values, while it progressively decreased hypothalamic FA values. Regression analyses further revealed that this could be most strongly linked to plasma CrP levels, which independently predicted hypothalamic FA values when adjusting for age, sex, fat mass, and diabetes diagnosis. These findings suggest that RYGB has a major time-dependent impact on hypothalamic inflammation status, possibly by attenuating peripheral inflammation. They also suggest that hypothalamic FA values may provide a more specific radiologic measure of hypothalamic inflammation than more commonly used T2W SI values.
Mohammed K. Hankir, Michael Rullmann, Florian Seyfried, Sven Preusser, Sindy Poppitz, Stefanie Heba, Konstantinos Gousias, Jana Hoyer, Tatjana Schütz, Arne Dietrich, Karsten Müller, Burkhard Pleger
Perturbations in biomechanical stimuli during cardiac development contribute to congenital cardiac defects such as hypoplastic left heart syndrome (HLHS). This study sought to identify stretch-responsive pathways involved in cardiac development. miRNA-Seq identified miR-486 as being increased in cardiomyocytes exposed to cyclic stretch in vitro. The right ventricles (RVs) of patients with HLHS experienced increased stretch and had a trend toward higher miR-486 levels. Sheep RVs dilated from excessive pulmonary blood flow had 60% more miR-486 compared with control RVs. The left ventricles of newborn mice treated with miR-486 mimic were 16.9%–24.6% larger and displayed a 2.48-fold increase in cardiomyocyte proliferation. miR-486 treatment decreased FoxO1 and Smad signaling while increasing the protein levels of Stat1. Stat1 associated with Gata-4 and serum response factor (Srf), 2 key cardiac transcription factors with protein levels that increase in response to miR-486. This is the first report to our knowledge of a stretch-responsive miRNA that increases the growth of the ventricle in vivo.
Stephan Lange, Indroneal Banerjee, Katrina Carrion, Ricardo Serrano, Louisa Habich, Rebecca Kameny, Luisa Lengenfelder, Nancy Dalton, Rudolph Meili, Emma Börgeson, Kirk Peterson, Marco Ricci, Joy Lincoln, Majid Ghassemian, Jeffery Fineman, Juan C. del Álamo, Vishal Nigam
Previous studies have demonstrated the presence of microbial DNA in the fetal environment. However, it remains unclear whether this DNA represents viable bacteria and how it relates to the maternal microbiota across body sites. We studied the microbiota of human and mouse dyads to understand these relationships, localize bacteria in the fetus, and demonstrate bacterial viability. In human preterm and full-term mother-infant dyads at the time of cesarean delivery, the oral cavity and meconium of newborn infants born as early as 24 weeks of gestation contained a microbiota that was predicted to originate from in utero sources, including the placenta. Using operative deliveries of pregnant mice under highly controlled, sterile conditions in the laboratory, composition, visualization, and viability of bacteria in the in utero compartment and fetal intestine were demonstrated by 16S rRNA gene sequencing, fluorescence in situ hybridization, and bacterial culture. The composition and predicted source of the fetal gut microbiota shifted between mid- and late gestation. Cultivatable bacteria in the fetal intestine were found during mid-gestation but not late gestation. Our results demonstrate a dynamic, viable mammalian fetal microbiota during in utero development.
Noelle Younge, Jessica R. McCann, Julie Ballard, Catherine Plunkett, Suhail Akhtar, Félix Araújo-Pérez, Amy Murtha, Debra Brandon, Patrick C. Seed
Aberrant accumulation and activation of eosinophils and potentially mast cells (MCs) contribute to the pathogenesis of eosinophilic gastrointestinal diseases (EGIDs), including eosinophilic esophagitis (EoE), gastritis (EG), and gastroenteritis (EGE). Current treatment options, such as diet restriction and corticosteroids, have limited efficacy and are often inappropriate for chronic use. One promising new approach is to deplete eosinophils and inhibit MCs with a monoclonal antibody (mAb) against sialic acid–binding immunoglobulin-like lectin 8 (Siglec-8), an inhibitory receptor selectively expressed on MCs and eosinophils. Here, we characterize MCs and eosinophils from human EG and EoE biopsies using flow cytometry and evaluate the effects of an anti–Siglec-8 mAb using a potentially novel Siglec-8–transgenic mouse model in which EG/EGE was induced by ovalbumin sensitization and intragastric challenge. MCs and eosinophils were significantly increased and activated in human EG and EoE biopsies compared with healthy controls. Similar observations were made in EG/EGE mice. In Siglec-8–transgenic mice, anti–Siglec-8 mAb administration significantly reduced eosinophils and MCs in the stomach, small intestine, and mesenteric lymph nodes and decreased levels of inflammatory mediators. In summary, these findings suggest a role for both MCs and eosinophils in EGID pathogenesis and support the evaluation of anti–Siglec-8 as a therapeutic approach that targets both eosinophils and MCs.
Bradford A. Youngblood, Emily C. Brock, John Leung, Rustom Falahati, Bruce S. Bochner, Henrik S. Rasmussen, Kathryn Peterson, Christopher Bebbington, Nenad Tomasevic
CD8+ tumor-infiltrating lymphocytes (TILs) correlate with relapse-free survival (RFS) in most cancer types, including breast cancer. However, subset composition, functional status, and spatial location of CD8+ TILs in relation to RFS in human breast tumors remain unclear. Spatial tissue analysis via quantitative immunofluorescence showed that infiltration of CD8+ T cells into cancer islands was more significantly associated with RFS than CD8+ T cell infiltration into either tumor stroma or total tumor. Localization into cancer islands within tumors is mediated by expression of the integrin CD103, which is a marker for tissue-resident memory T cells (TRMs). Analysis of fresh tumor samples revealed that CD8+ TRMs are functionally similar to other CD8+ TILs, suggesting that the basis of their protective effect is their spatial distribution rather than functional differences. Indeed, CD103+ TRMs, as compared with CD103–CD8+ TILs, are enriched within cancer islands, and CD8+ TRM proximity to cancer cells drives the association of CD8+ TIL densities with RFS. Together, these findings reveal the importance of cancer island–localized CD8+ TRMs in surveillance of the breast tumor microenvironment and as a critical determinant of RFS in patients with breast cancer.
Colt A. Egelston, Christian Avalos, Travis Y. Tu, Anthony Rosario, Roger Wang, Shawn Solomon, Gayathri Srinivasan, Michael S. Nelson, Yinghui Huang, Min Hui Lim, Diana L. Simons, Ting-Fang He, John H. Yim, Laura Kruper, Joanne Mortimer, Susan Yost, Weihua Guo, Christopher Ruel, Paul H. Frankel, Yuan Yuan, Peter P. Lee
We hypothesized that HIV-1 with dual-class but not single-class drug resistance mutations linked on the same viral genome, present in the virus population before initiation of antiretroviral therapy (ART), would be associated with failure of ART to suppress viremia. To test this hypothesis, we utilized an ultrasensitive single-genome sequencing assay that detects rare HIV-1 variants with linked drug resistance mutations (DRMs). A case (ART failure) control (nonfailure) study was designed to assess whether linkage of DRMs in pre-ART plasma samples was associated with treatment outcome in the nevirapine/tenofovir/emtricitabine arm of the AIDS Clinical Trials Group A5208/Optimal Combined Therapy After Nevirapine Exposure (OCTANE) Trial 1 among women who had received prior single-dose nevirapine. Ultrasensitive single-genome sequencing revealed a significant association between pre-ART HIV variants with DRMs to 2 drug classes linked on the same genome (dual class) and failure of combination ART with 3 drugs to suppress viremia. In contrast, linked, single-class DRMs were not associated with ART failure. We conclude that linked dual-class DRMs present before the initiation of ART are associated with ART failure, whereas linked single-class DRMs are not.
Valerie F. Boltz, Wei Shao, Michael J. Bale, Elias K. Halvas, Brian Luke, James A. McIntyre, Robert T. Schooley, Shahin Lockman, Judith S. Currier, Fred Sawe, Evelyn Hogg, Michael D. Hughes, Mary F. Kearney, John M. Coffin, John W. Mellors
Excessive vascular remodeling is characteristic of hemophilic arthropathy (HA) and may contribute to joint bleeding and the progression of HA. Mechanisms for pathological vascular remodeling after hemophilic joint bleeding are unknown. In hemophilia, activation of thrombin-activatable fibrinolysis inhibitor (TAFI) is impaired, which contributes to joint bleeding and may also underlie the aberrant vascular remodeling. Here, hemophilia A (factor VIII–deficient; FVIII-deficient) mice or TAFI-deficient mice with transient (antibody-induced) hemophilia A were used to determine the role of FVIII and TAFI in vascular remodeling after joint bleeding. Excessive vascular remodeling and vessel enlargement persisted in FVIII-deficient and TAFI-deficient mice, but not in transient hemophilia WT mice, after similar joint bleeding. TAFI-overexpression in FVIII-deficient mice prevented abnormal vessel enlargement and vascular leakage. Age-related vascular changes were observed with FVIII or TAFI deficiency and correlated positively with bleeding severity after injury, supporting increased vascularity as a major contributor to joint bleeding. Antibody-mediated inhibition of uPA also prevented abnormal vascular remodeling, suggesting that TAFI’s protective effects include inhibition of uPA-mediated plasminogen activation. In conclusion, the functional TAFI deficiency in hemophilia drives maladaptive vascular remodeling in the joints after bleeding. These mechanistic insights allow targeted development of potentially new strategies to normalize vascularity and control rebleeding in HA.
Tine Wyseure, Tingyi Yang, Jenny Y. Zhou, Esther J. Cooke, Bettina Wanko, Merissa Olmer, Ruchi Agashe, Yosuke Morodomi, Niels Behrendt, Martin Lotz, John Morser, Annette von Drygalski, Laurent O. Mosnier
No posts were found with this tag.