BACKGROUND. Constitutive activation of ERK1/2 occurs in various cancers, and its reactivation is a well-described resistance mechanism to MAPK inhibitors. ERK inhibitors may overcome the limitations of MAPK inhibitor blockade. The dual mechanism inhibitor SCH772984 has shown promising preclinical activity across various BRAFV600/RAS-mutant cancer cell lines and human cancer xenografts. METHODS. We have developed an orally bioavailable ERK inhibitor, MK-8353; conducted preclinical studies to demonstrate activity, pharmacodynamic endpoints, dosing, and schedule; completed a study in healthy volunteers (P07652); and subsequently performed a phase I clinical trial in patients with advanced solid tumors (MK-8353-001). In the P07652 study, MK-8353 was administered as a single dose in 10- to 400-mg dose cohorts, whereas in the MK-8353-001 study, MK-8353 was administered in 100- to 800-mg dose cohorts orally twice daily. Safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity were analyzed. RESULTS. MK-8353 exhibited comparable potency with SCH772984 across various preclinical cancer models. Forty-eight patients were enrolled in the P07652 study, and twenty-six patients were enrolled in the MK-8353-001 study. Adverse events included diarrhea (44%), fatigue (40%), nausea (32%), and rash (28%). Dose-limiting toxicity was observed in the 400-mg and 800-mg dose cohorts. Sufficient exposure to MK-8353 was noted that correlated with biological activity in preclinical data. Three of fifteen patients evaluable for treatment response in the MK-8353-001 study had partial response, all with BRAFV600-mutant melanomas. CONCLUSION. MK-8353 was well tolerated up to 400 mg twice daily and exhibited antitumor activity in patients with BRAFV600-mutant melanoma. However, antitumor activity was not particularly correlated with pharmacodynamic parameters. TRIAL REGISTRATION. ClinicalTrials.gov NCT01358331. FUNDING. Merck Sharp & Dohme Corp., a subsidiary of Merck & Co. Inc., and NIH (P01 CA168585 and R35 CA197633).
Stergios J. Moschos, Ryan J. Sullivan, Wen-Jen Hwu, Ramesh K. Ramanathan, Alex A. Adjei, Peter C. Fong, Ronnie Shapira-Frommer, Hussein A. Tawbi, Joseph Rubino, Thomas S. Rush III, Da Zhang, Nathan R. Miselis, Ahmed A. Samatar, Patrick Chun, Eric H. Rubin, James Schiller, Brian J. Long, Priya Dayananth, Donna Carr, Paul Kirschmeier, W. Robert Bishop, Yongqi Deng, Alan Cooper, Gerald W. Shipps, Blanca Homet Moreno, Lidia Robert, Antoni Ribas, Keith T. Flaherty
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, fatal disorder with no effective treatment. We used simple genetic models of ALS to screen phenotypically for potential therapeutic compounds. We screened libraries of compounds in C. elegans, validated hits in zebrafish, and tested the most potent molecule in mice and in a small clinical trial. We identified a class of neuroleptics that restored motility in C. elegans and in zebrafish, and the most potent was pimozide, which blocked T-type Ca2+ channels in these simple models and stabilized neuromuscular transmission in zebrafish and enhanced it in mice. Finally, a short randomized controlled trial of sporadic ALS subjects demonstrated stabilization of motility and evidence of target engagement at the neuromuscular junction. Simple genetic models are, thus, useful in identifying promising compounds for the treatment of ALS, such as neuroleptics, which may stabilize neuromuscular transmission and prolong survival in this disease.
Shunmoogum A. Patten, Dina Aggad, Jose Martinez, Elsa Tremblay, Janet Petrillo, Gary A.B. Armstrong, Alexandre La Fontaine, Claudia Maios, Meijiang Liao, Sorana Ciura, Xiao-Yan Wen, Victor Rafuse, Justin Ichida, Lorne Zinman, Jean-Pierre Julien, Edor Kabashi, Richard Robitaille, Lawrence Korngut, J. Alexander Parker, Pierre Drapeau
BACKGROUND. Deficiency of IL-1 receptor antagonist (DIRA) is a rare autoinflammatory disease that presents with life-threatening systemic inflammation, aseptic multifocal osteomyelitis, and pustulosis responsive to IL-1–blocking treatment. This study was performed (a) to investigate rilonacept, a long-acting IL-1 inhibitor, in maintaining anakinra-induced inflammatory remission in DIRA patients, (b) to determine doses needed to maintain remission, and (c) to evaluate the safety and pharmacokinetics of rilonacept in young children (<12 years). METHODS. Six mutation-positive DIRA patients (children, ages 3–6 years), treated with daily anakinra, were enrolled into an open-label pilot study of subcutaneous rilonacept for 24 months. Clinical symptoms and inflammatory blood parameters were measured at all visits. A loading dose (4.4 mg/kg) was administered, followed by once weekly injections (2.2 mg/kg) for 12 months. Dose escalation (4.4 mg/kg) was allowed if inflammatory remission was not maintained. Subjects in remission at 12 months continued rilonacept for an additional 12 months. RESULTS. Five of six patients required dose escalation for findings of micropustules. Following dose escalation, all patients were in remission on weekly rilonacept administration, with stable laboratory parameters for the entire study period of 24 months. All children are growing at normal rates and have normal heights and weights. Quality of life improved while on rilonacept. No serious adverse events were reported. CONCLUSION. Rilonacept was found to maintain inflammatory remission in DIRA patients. The once weekly injection was well tolerated and correlated with increased quality of life, most likely related to the lack of daily injections. TRIAL REGISTRATION. ClinicalTrials.gov NCT01801449. FUNDING. NIH, NIAMS, and NIAID.
Megha Garg, Adriana A. de Jesus, Dawn Chapelle, Paul Dancey, Ronit Herzog, Rafael Rivas-Chacon, Theresa L. Wampler Muskardin, Ann Reed, James C. Reynolds, Raphaela Goldbach-Mansky, Gina A. Montealegre Sanchez
BACKGROUND. Metabolic syndrome (MetS) is an obesity-driven condition of pandemic proportions that increases the risk of type 2 diabetes and cardiovascular disease. Pathophysiological mechanisms are poorly understood, though inflammation has been implicated in MetS pathogenesis. The aim of this study was to assess the effects of galantamine, a centrally acting acetylcholinesterase inhibitor with antiinflammatory properties, on markers of inflammation implicated in insulin resistance and cardiovascular risk, and other metabolic and cardiovascular indices in subjects with MetS. METHODS. In this randomized, double-blind, placebo-controlled trial, subjects with MetS (30 per group) received oral galantamine 8 mg daily for 4 weeks, followed by 16 mg daily for 8 weeks or placebo. The primary outcome was inflammation assessed through plasma levels of cytokines and adipokines associated with MetS. Secondary endpoints included body weight, fat tissue depots, plasma glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), cholesterol (total, HDL, LDL), triglycerides, BP, heart rate, and heart rate variability (HRV). RESULTS. Galantamine resulted in lower plasma levels of proinflammatory molecules TNF (–2.57 pg/ml [95% CI –4.96 to –0.19]; P = 0.035) and leptin (–12.02 ng/ml [95% CI –17.71 to –6.33]; P < 0.0001), and higher levels of the antiinflammatory molecules adiponectin (2.71 μg/ml [95% CI 1.93 to 3.49]; P < 0.0001) and IL-10 (1.32 pg/ml, [95% CI 0.29 to 2.38]; P = 0.002) as compared with placebo. Galantamine also significantly lowered plasma insulin and HOMA-IR values, and altered HRV. CONCLUSION. Low-dose galantamine alleviates inflammation and insulin resistance in MetS subjects. These findings support further study of galantamine in MetS therapy. TRIAL REGISTRATION. ClinicalTrials.gov, number NCT02283242. FUNDING. Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, and the NIH.
Fernanda M. Consolim-Colombo, Carine T. Sangaleti, Fernando O. Costa, Tercio L. Morais, Heno F. Lopes, Josiane M. Motta, Maria C. Irigoyen, Luiz A. Bortoloto, Carlos Eduardo Rochitte, Yael Tobi Harris, Sanjaya K. Satapathy, Peder S. Olofsson, Meredith Akerman, Sangeeta S. Chavan, Meggan MacKay, Douglas P. Barnaby, Martin L. Lesser, Jesse Roth, Kevin J. Tracey, Valentin A. Pavlov
The placebo effect is a phenomenon in which patients who are given an inactive treatment (e.g., inert pill) show a perceived or actual improvement in a medical condition. Placebo effects in clinical trials have been investigated for many years especially because placebo treatments often serve as the control arm of randomized clinical trial designs. Recent observations suggest that placebo effects may be modified by genetics. This observation has given rise to the term “placebome,” which refers to a group of genome-related mediators that affect an individual’s response to placebo treatments. In this study, we conduct a network analysis of the placebome and identify a placebome module in the comprehensive human interactome using a seed-connector algorithm. The placebome module is significantly enriched with neurotransmitter signaling pathways and brain-specific proteins. We validate the placebome module using a large cohort of the Women’s Genome Health Study (WGHS) trial and demonstrate that the placebome module is significantly enriched with genes whose SNPs modify the outcome in the placebo arm of the trial. To gain insights into placebo effects in different diseases and drug treatments, we use a network proximity measure to examine the closeness of the placebome module to different disease modules and drug target modules. The results demonstrate that the network proximity of the placebome module to disease modules in the interactome significantly correlates with the strength of the placebo effect in the corresponding diseases. The proximity of the placebome module to molecular pathways affected by certain drug classes indicates the existence of placebo-drug interactions. This study is helpful for understanding the molecular mechanisms mediating the placebo response, and sets the stage for minimizing its effects in clinical trials and for developing therapeutic strategies that intentionally engage it.
Rui-Sheng Wang, Kathryn T. Hall, Franco Giulianini, Dani Passow, Ted J. Kaptchuk, Joseph Loscalzo
Background. Reports on long-term (≥10 years) effects of cancer vaccines are missing. Therefore, in 2002, we initiated a phase I/II trial in cutaneous melanoma patients to further explore the immunogenicity of our DC vaccine and to establish its long-term toxicity and clinical benefit after a planned 10-year followup.
Methods. Monocyte-derived DCs matured by TNFα, IL-1β, IL-6, and PGE2 and then loaded with 4 HLA class I and 6 class II–restricted tumor peptides were injected intradermally in high doses over 2 years. We performed serial immunomonitoring in all 53 evaluable patients.
Results. Vaccine-specific immune responses including high-affinity, IFNγ-producing CD4+ and lytic polyfunctional CD8+ T cells were de novo induced or boosted in most patients. Exposure of mature DCs to trimeric soluble CD40 ligand, unexpectedly, did not further enhance such immune responses, while keyhole limpet hemocyanin (KLH) pulsing to provide unspecific CD4+ help promoted CD8+ T cell responses — notably, their longevity. An unexpected 19% of nonresectable metastatic melanoma patients are still alive after 11 years, a survival rate similar to that observed in ipilimumab-treated patients and achieved without any major (>grade 2) toxicity. Survival correlated significantly with the development of intense vaccine injection site reactions, and with blood eosinophilia after the first series of vaccinations, suggesting that prolonged survival was a consequence of DC vaccination.
Conclusions. Long-term survival in advanced melanoma patients undergoing DC vaccination is similar to ipilimumab-treated patients and occurs upon induction of tumor-specific T cells, blood eosinophilia, and strong vaccine injection site reactions occurring after the initial vaccinations.
TRIAL REGISTRATION. ClinicalTrials.gov NCT00053391.
FUNDING. European Community, Sixth Framework Programme (Cancerimmunotherapy LSHC-CT-2006-518234; DC-THERA LSHB-CT-2004-512074), and German Research Foundation (CRC 643, C1, Z2).
Stefanie Gross, Michael Erdmann, Ina Haendle, Steve Voland, Thomas Berger, Erwin Schultz, Erwin Strasser, Peter Dankerl, Rolf Janka, Stefan Schliep, Lucie Heinzerling, Karl Sotlar, Pierre Coulie, Gerold Schuler, Beatrice Schuler-Thurner
Vivek Subbiah, Muhammad Rizwan Khawaja, David S. Hong, Behrang Amini, Jiang Yungfang, Hui Liu, Adrienne Johnson, Alexa B. Schrock, Siraj M. Ali, James X. Sun, David Fabrizio, Sarina Piha-Paul, Siqing Fu, Apostolia M. Tsimberidou, Aung Naing, Filip Janku, Daniel D. Karp, Michael Overman, Cathy Eng, Scott Kopetz, Funda Meric-Bernstam, Gerald S. Falchook
Julie E. Bauman, Umamaheswar Duvvuri, William E. Gooding, Tanya J. Rath, Neil D. Gross, John Song, Antonio Jimeno, Wendell G. Yarbrough, Faye M. Johnson, Lin Wang, Simion Chiosea, Malabika Sen, Jason Kass, Jonas T. Johnson, Robert L. Ferris, Seungwon Kim, Fred R. Hirsch, Kimberly Ellison, John T. Flaherty, Gordon B. Mills, Jennifer R. Grandis
Jan A. Burger, Kelvin W. Li, Michael J. Keating, Mariela Sivina, Ahmed M. Amer, Naveen Garg, Alessandra Ferrajoli, Xuelin Huang, Hagop Kantarjian, William G. Wierda, Susan O’Brien, Marc K. Hellerstein, Scott M. Turner, Claire L. Emson, Shih-Shih Chen, Xiao-Jie Yan, Dominik Wodarz, Nicholas Chiorazzi
Judith E. Epstein, Kristopher M. Paolino, Thomas L. Richie, Martha Sedegah, Alexandra Singer, Adam J. Ruben, Sumana Chakravarty, April Stafford, Richard C. Ruck, Abraham G. Eappen, Tao Li, Peter F. Billingsley, Anita Manoj, Joana C. Silva, Kara Moser, Robin Nielsen, Donna Tosh, Susan Cicatelli, Harini Ganeshan, Jessica Case, Debbie Padilla, Silas Davidson, Lindsey Garver, Elizabeth Saverino, Tooba Murshedkar, Anusha Gunasekera, Patrick S. Twomey, Sharina Reyes, James E. Moon, Eric R. James, Natasha KC, Minglin Li, Esteban Abot, Arnel Belmonte, Kevin Hauns, Maria Belmonte, Jun Huang, Carlos Vasquez, Shon Remich, Mary Carrington, Yonas Abebe, Amy Tillman, Bradley Hickey, Jason Regules, Eileen Villasante, B. Kim Lee Sim, Stephen L. Hoffman
No posts were found with this tag.