Although murine models of coronary atherosclerotic disease have been used extensively to determine mechanisms, limited new therapeutic options have emerged. Pigs with familial hypercholesterolemia (FH pigs) develop complex coronary atheromas that are almost identical to human lesions. We reported previously that insulin-like growth factor 1 (IGF-1) reduced aortic atherosclerosis and promoted features of stable plaque in a murine model. We administered human recombinant IGF-1 or saline (control) in atherosclerotic FH pigs for 6 months. IGF-1 decreased relative coronary atheroma in vivo (intravascular ultrasound) and reduced lesion cross-sectional area (postmortem histology). IGF-1 increased plaque’s fibrous cap thickness, and reduced necrotic core, macrophage content, and cell apoptosis consistent with promotion of a stable plaque phenotype. IGF-1 reduced circulating triglycerides, markers of systemic oxidative stress and CXCL12 chemokine levels. We used spatial transcriptomics (ST) to identify global transcriptome changes in advanced plaque compartments and to obtain mechanistic insights into IGF-1 effects. ST analysis shows that IGF-1 suppressed FOS/FOSB factors and gene expression of MMP9 and CXCL14 in plaque macrophages, suggesting possible involvement of these molecules in IGF-1’s effect on atherosclerosis. Thus, IGF-1 reduced coronary plaque burden and promoted features of stable plaque in a pig model, providing support for consideration of clinical trials.
Sergiy Sukhanov, Yusuke Higashi, Tadashi Yoshida, Svitlana Danchuk, Mitzi Alfortish, Traci Goodchild, Amy Scarborough, Thomas E. Sharp III, James S. Jenkins, Daniel Garcia, Jan Ivey, Darla L. Tharp, Jeffrey D. Schumacher, Zach Rozenbaum, Jay K Kolls, Douglas K. Bowles, David Lefer, Patrice Delafontaine
Sinoatrial node (SAN) cells are the heart’s primary pacemaker. Their activity is tightly regulated by β-adrenergic receptor (β-AR) signaling. Adenylyl cyclase (AC) is a key enzyme in the β-AR pathway that catalyzes the production of cAMP. There are current gaps in our knowledge regarding the dominant AC isoforms and the specific roles of Ca2+-activated ACs in the SAN. The current study tests the hypothesis that distinct AC isoforms are preferentially expressed in the SAN and compartmentalize within microdomains to orchestrate heart rate regulation during β-AR signaling. In contrast to atrial and ventricular myocytes, SAN cells express a diverse repertoire of ACs, with ACI as the predominant Ca2+-activated isoform. Although ACI-KO (ACI–/–) mice exhibit normal cardiac systolic or diastolic function, they experience SAN dysfunction. Similarly, SAN-specific CRISPR/Cas9-mediated gene silencing of ACI results in sinus node dysfunction. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channels form functional microdomains almost exclusively with ACI, while ryanodine receptor and L-type Ca2+ channels likely compartmentalize with ACI and other AC isoforms. In contrast, there were no significant differences in T-type Ca2+ and Na+ currents at baseline or after β-AR stimulation between WT and ACI–/– SAN cells. Due to its central characteristic feature as a Ca2+-activated isoform, ACI plays a unique role in sustaining the rise of local cAMP and heart rates during β-AR stimulation. The findings provide insights into the critical roles of the Ca2+-activated isoform of AC in sustaining SAN automaticity that is distinct from contractile cardiomyocytes.
Lu Ren, Phung N. Thai, Raghavender Reddy Gopireddy, Valeriy Timofeyev, Hannah A. Ledford, Ryan L. Woltz, Seojin Park, Jose L. Puglisi, Claudia M. Moreno, Luis Fernando Santana, Alana C. Conti, Michael I. Kotlikoff, Yang Kevin Xiang, Vladimir Yarov-Yarovoy, Manuela Zaccolo, Xiao-Dong Zhang, Ebenezer N. Yamoah, Manuel F. Navedo, Nipavan Chiamvimonvat
There is limited data on the link between cardiac autonomic neuropathy (CAN) and severe hypoglycemia, in type 2 diabetes. We evaluated the associations of CAN with severe hypoglycemia among 7,421 adults with type 2 diabetes from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study. CAN was defined using electrocardiogram-derived measures. Cox and Andersen-Gill regression models were used to generate hazard ratios (HRs) for first and recurrent severe hypoglycemic episodes, respectively. Over 4.7 years, there were 558 first and 811 recurrent hypoglycemic events. Participants with CAN had increased risks of first (HR 1.23, 95%CI 1.01-1.50) or recurrent (HR: 1.46, 95%CI 1.16-1.84) episodes of severe hypoglycemia. The intensity of glycemic management modified the CAN association with hypoglycemia (P for interaction <0.05). In the standard glycemic management group, compared to participants without CAN, HRs for first severe hypoglycemia and recurrent hypoglycemia were 1.58 (95%CI 1.13-2.23) and 1.96 (1.33-2.90). In the intensive glycemic management group, HRs for first severe hypoglycemia and recurrent hypoglycemia were 1.10 (0.86-1.40) and 1.24 (0.93-1.65). In summary, CAN was independently associated with higher risks of first and recurrent hypoglycemia among adults with type 2 diabetes, with the highest risk observed among those on standard glycemic management.
Arnaud D. Kaze, Matthew F. Yuyun, Rexford S. Ahima, Michael R. Rickels, Justin B. Echouffo-Tcheugui
Rest has long been considered beneficial to patient healing, yet remarkably there are no evidence-based experimental models determining how it benefits disease outcomes. Here, we create a novel experimental rest model in mice that briefly extends the morning rest period. We found, in two different major cardiovascular disease conditions (cardiac hypertrophy, myocardial infarction), that imposing a short, extended period of morning rest each day limits cardiac remodeling, as compared to controls. Mechanistically, rest mitigates autonomic-mediated hemodynamic stress on the cardiovascular system, relaxes myofilament contractility, attenuates cardiac remodeling genes, consistent with the benefits on cardiac structure and function. These same rest-responsive gene pathways underlie the pathophysiology of many major human cardiovascular conditions, as demonstrated by interrogating open-source transcriptomic data, and thus patients with other conditions may also benefit from a morning rest period in a similar manner. Our findings implicate rest as a key driver of physiology, creating an entirely new field – as broad and important as diet, sleep, or exercise – and provide a strong rationale for investigation of rest-based therapy for major clinical diseases.
Cristine J. Reitz, Mina Rasouli, Faisal J. Alibhai, Tarak Nath Khatua, W. Glen Pyle, Tami A. Martino
Gene mutations causing loss of dystrophin result in the severe muscle disease known as Duchenne muscular dystrophy (DMD). Despite efforts at genetic repair, DMD therapy remains largely palliative. Loss of dystrophin destabilizes the sarcolemmal membrane impacting mechanosensitive cation channels to increase calcium entry, promoting cell damage, and eventually muscle dysfunction. One putative channel is transient receptor potential canonical 6 (TRPC6) that we showed contributes to abnormal force and calcium stress-responses in mouse cardiomyocytes lacking dystrophin and haplodeficient in utrophin mdx/utrn+/- (HET). Here, we show in both HET and the far more severe homozygous mdx/utrn-/- (DKO) mouse that TRPC6 gene deletion or its selective pharmacologic inhibition (BI 749327) prolongs survival 2-3-fold, improving skeletal and cardiac muscle and bone defects. Gene pathways reduced by BI 749327 treatment most prominently regulate fat metabolism and TGFβ1 signaling. These results support the testing of TRPC6 inhibitors in human trials for other diseases as a novel DMD therapy.
Brian L. Lin, Joseph Y. Shin, William P.D. Jeffreys, Nadan Wang, Clarisse A. Lukban, Megan C. Moorer, Esteban Velarde, Olivia A. Hanselman, Seoyoung Kwon, Suraj Kannan, Ryan C. Riddle, Christopher W. Ward, Steven S. Pullen, Antonio Filareto, David A. Kass
Obesity is an important risk factor for atrial fibrillation (AF), but a better mechanistic understanding of obesity-related atrial fibrillation is required. Serum glucocorticoid kinase 1 (SGK1) is a kinase positioned within multiple obesity-related pathways, and prior work has shown a pathologic role of SGK1 signaling in ventricular arrhythmias. We validated a mouse model of obesity-related AF using wild type mice fed a high fat diet. RNA sequencing of atrial tissue demonstrated substantial differences in gene expression, with enrichment of multiple SGK1-related pathways, and we confirmed upregulated of SGK1 transcription, activation, and signaling in obese atria. Mice expressing a cardiac specific dominant negative SGK1 were protected from obesity-related AF, through effects on atrial electrophysiology, action potential characteristics, structural remodeling, inflammation, and sodium current. Overall, this study demonstrates the promise of targeting SGK1 in a mouse model of obesity-related AF.
Aneesh Bapat, Guoping Li, Ling Xiao, Ashish Yeri, Maarten Hulsmans, Jana Grune, Masahiro Yamazoe, Maximillian J. Schloss, Yoshiko Iwamoto, Justin G. Tedeschi, Xinyu Yang, Matthias Nahrendorf, Anthony Rosenzweig, Patrick T. Ellinor, Saumya Das, David Milan
Chitinase 3-like 1 (CHI3L1) is the prototypic chitinase-like protein mediating inflammation, cell proliferation, and tissue remodeling. Limited data suggests CHI3L1 is elevated in human pulmonary arterial hypertension (PAH) and is associated with disease severity. Despite its importance as a regulator of injury/repair responses, the relationship between CHI3L1 and pulmonary vascular remodeling is not well understood. We hypothesize that CHI3L1 and its signaling pathways contribute to the vascular remodeling responses that occur in pulmonary hypertension (PH). We examined the relationship of plasma CHI3L1 levels and severity of PH in patients with various forms of PH, including Group 1 PAH and Group 3 PH, and found that circulating levels of serum CHI3L1 were associated with worse hemodynamics and correlated directly with mean pulmonary artery pressure and pulmonary vascular resistance. We also used transgenic mice with constitutive knockout and inducible overexpression of CHI3L1 to examine its role in hypoxia-, monocrotaline-, and bleomycin-induced models of pulmonary vascular disease. In all 3 mouse models of pulmonary vascular disease, pulmonary hypertensive responses were mitigated in CHI3L1 null mice and accentuated in transgenic mice that overexpress CHI3L1. Finally, CHI3L1 alone was sufficient to induce pulmonary arterial smooth muscle cell proliferation, inhibit pulmonary vascular endothelial cell apoptosis, induce the loss of endothelial barrier function, and induce endothelial-to-mesenchymal transition. These findings demonstrate that CHI3L1 and its receptors play an integral role in pulmonary vascular disease pathobiology and may offer a novel target for the treatment PAH and PH associated with fibrotic lung disease.
Xiuna Sun, Erika Nakajima, Carmelissa Norbrun, Parand Sorkhdini, Alina Xiaoyu Yang, Dongqin Yang, Corey E. Ventetuolo, Julie Braza, Alexander Vang, Jason Aliotta, Debasree Banerjee, Mandy Pereira, Grayson Baird, Qing Lu, Elizabeth O. Harrington, Sharon Rounds, Chun Geun Lee, Hongwei Yao, Gaurav Choudhary, James R. Klinger, Yang Zhou
Membrane instability and disruption underlie myriad acute and chronic disorders. Anxa6 encodes the membrane-associated protein annexin A6 and was identified as a genetic modifier of muscle repair and muscular dystrophy. To evaluate annexin A6’s role in membrane repair in vivo, we inserted sequences encoding green fluorescent protein (GFP) into the last coding exon of Anxa6. Heterozygous Anxa6gfp mice expressed a normal pattern of annexin A6 with reduced annexin A6GFP mRNA and protein. High-resolution imaging of wounded muscle fibers showed annexin A6GFP rapidly formed a repair cap at the site of injury. Injured cardiomyocytes and neurons also displayed repair caps after wounding, highlighting annexin A6–mediated repair caps as a feature in multiple cell types. Using surface plasmon resonance, we showed recombinant annexin A6 bound phosphatidylserine-containing lipids in a Ca2+- and dose-dependent fashion with appreciable binding at approximately 50 μM Ca2+. Exogenously added recombinant annexin A6 localized to repair caps and improved muscle membrane repair capacity in a dose-dependent fashion without disrupting endogenous annexin A6 localization, indicating annexin A6 promotes repair from both intracellular and extracellular compartments. Thus, annexin A6 orchestrates repair in multiple cell types, and recombinant annexin A6 may be useful in additional chronic disorders beyond skeletal muscle myopathies.
Alexis R. Demonbreun, Elena Bogdanovic, Lauren A. Vaught, Nina L. Reiser, Katherine S. Fallon, Ashlee M. Long, Claire C. Oosterbaan, Michele Hadhazy, Patrick G.T. Page, Prem Raj B. Joseph, Gabrielle Cowen, Alexander M. Telenson, Ammaarah Khatri, Katherine R. Sadleir, Robert Vassar, Elizabeth M. McNally
Developmental cardiac tissue is regenerative while operating under low oxygen. After birth, ambient oxygen is associated with cardiomyocyte cell cycle exit and regeneration. Likewise, cardiac metabolism undergoes a shift with cardiac maturation. Whether there are common regulators of cardiomyocyte cell cycle linking metabolism to oxygen tension remains unknown. The objective of the study is to determine whether mitochondrial UCP2 is a metabolic oxygen sensor regulating cardiomyocyte cell cycle. Neonatal rat ventricular myocytes (NRVMs) under moderate hypoxia showed increased cell cycle activity and UCP2 expression. NRVMs exhibited a metabolic shift towards glycolysis, reduced citrate synthase, mtDNA, ΔΨm and DNA damage/oxidative stress while loss of UCP2 reversed this phenotype. Next, WT and UCP2KO mice kept under hypoxia for 4 weeks showed significant decline in cardiac function that was more pronounced in UCP2KO animals. Cardiomyocyte cell cycle activity was reduced while fibrosis and DNA damage was significantly increased in UCP2KO animals compared to WT under hypoxia. Mechanistically, UCP2 increased acetyl-CoA levels, histone acetylation and altered chromatin modifiers linking metabolism to cardiomyocyte cell cycle under hypoxia. Here, we show a novel role for mitochondrial UCP2 as an oxygen sensor regulating cardiomyocyte cell cycle activity, acetyl-CoA levels and histone acetylation in response to moderate hypoxia.
Vagner O.C. Rigaud, Clare Zarka, Justin Kurian, Daria Harlamova, Andrea Elia, Nicole Kasatkin, Jaslyn Johnson, Michael Behanan, Lindsay Kraus, Hannah Pepper, Nathaniel W. Snyder, Sadia Mohsin, Steven Houser, Mohsin Khan
Cardiac fibrosis, a primary contributor to heart failure (HF) and sudden death, is considered an important target for HF therapy. However, the signaling pathways that govern cardiac fibroblast (CF) function during cardiac fibrosis have not been fully elucidated. Here, we found that a functionally unannotated human myocardial infarction (MI) associated gene, family with sequence similarity 114 member A1 (FAM114A1), is induced in failing human and mouse hearts compared to non-failing hearts. Homozygous knockout of Fam114a1 (Fam114a1–/–) in the mouse genome reduces cardiac hypertrophy and fibrosis while significantly restores cardiac function in angiotensin (Ang) II- and MI-induced HF mouse models. Fam114a1 deletion antagonizes Ang II-induced inflammation and oxidative stress. Using isolated mouse primary CFs in wild type and Fam114a1–/– mice, we found that FAM114A1 is a critical autonomous factor for CF proliferation, activation, and migration. We discovered that FAM114A1 interacts with angiotensin receptor-associated protein (AGTRAP) and regulates the expression of angiotensin type 1 receptor (AT1R) and downstream Ang II signaling transduction, and subsequently influences pro-fibrotic response. Using RNA-Seq in mouse primary CFs, we identified differentially expressed genes, including extracellular matrix proteins such as Adamts15. RNAi-mediated inactivation of Adamts15 attenuates CF activation and collagen deposition. Our results indicate that FAM114A1 regulates Ang II signaling and downstream pro-fibrotic and pro-inflammatory gene expression, thereby activating cardiac fibroblasts and augmenting pathological cardiac remodeling. These findings provide novel insights into the regulation of cardiac fibrosis and identify FAM114A1 as a new therapeutic target for the treatment of cardiac disease.
Kadiam C. Venkata Subbaiah, Jiangbin Wu, Wai Hong Wilson Tang, Peng Yao
No posts were found with this tag.