Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Enhancing mitochondrial pyruvate metabolism ameliorates ischemic reperfusion injury in the heart
Joseph R. Visker, Ahmad A. Cluntun, Jesse N. Velasco-Silva, David R. Eberhardt, Luis Cedeño-Rosario, Thirupura S. Shankar, Rana Hamouche, Jing Ling, Hyoin Kwak, J. Yanni Hillas, Ian Aist, Eleni Tseliou, Sutip Navankasattusas, Dipayan Chaudhuri, Gregory S. Ducker, Stavros G. Drakos, Jared Rutter
Joseph R. Visker, Ahmad A. Cluntun, Jesse N. Velasco-Silva, David R. Eberhardt, Luis Cedeño-Rosario, Thirupura S. Shankar, Rana Hamouche, Jing Ling, Hyoin Kwak, J. Yanni Hillas, Ian Aist, Eleni Tseliou, Sutip Navankasattusas, Dipayan Chaudhuri, Gregory S. Ducker, Stavros G. Drakos, Jared Rutter
View: Text | PDF | Corrigendum
Research Article Cardiology Metabolism

Enhancing mitochondrial pyruvate metabolism ameliorates ischemic reperfusion injury in the heart

  • Text
  • PDF
Abstract

The clinical therapy for treating acute myocardial infarction is primary percutaneous coronary intervention (PPCI). PPCI is effective at reperfusing the heart; however, the rapid reintroduction of blood can cause ischemia-reperfusion (I/R). Reperfusion injury is responsible for up to half of the total myocardial damage, but there are no pharmacological interventions to reduce I/R. We previously demonstrated that inhibiting monocarboxylate transporter 4 (MCT4) and redirecting pyruvate toward oxidation can blunt hypertrophy. We hypothesized that this pathway might be important during I/R. Here, we establish that the pyruvate-lactate axis plays a role in determining myocardial salvage following injury. After I/R, the mitochondrial pyruvate carrier (MPC), required for pyruvate oxidation, is upregulated in the surviving myocardium. In cardiomyocytes lacking the MPC, there was increased cell death and less salvage after I/R, which was associated with an upregulation of MCT4. To determine the importance of pyruvate oxidation, we inhibited MCT4 with a small-molecule drug (VB124) at reperfusion. This strategy normalized reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨ), and Ca2+, increased pyruvate entry to the TCA cycle, increased oxygen consumption, and improved myocardial salvage and functional outcomes following I/R. Our data suggest normalizing pyruvate-lactate metabolism by inhibiting MCT4 is a promising therapy to mitigate I/R injury.

Authors

Joseph R. Visker, Ahmad A. Cluntun, Jesse N. Velasco-Silva, David R. Eberhardt, Luis Cedeño-Rosario, Thirupura S. Shankar, Rana Hamouche, Jing Ling, Hyoin Kwak, J. Yanni Hillas, Ian Aist, Eleni Tseliou, Sutip Navankasattusas, Dipayan Chaudhuri, Gregory S. Ducker, Stavros G. Drakos, Jared Rutter

×

Full Text PDF

Download PDF (10.60 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts