Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Bone biology

  • 128 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 12
  • 13
  • Next →
Mast cell activation by NGF drives the formation of trauma-induced heterotopic ossification
Tao Jiang, Xiang Ao, Xin Xiang, Jie Zhang, Jieyi Cai, Jiaming Fu, Wensheng Zhang, Zhenyu Zheng, Jun Chu, Minjun Huang, Zhongmin Zhang, Liang Wang
Tao Jiang, Xiang Ao, Xin Xiang, Jie Zhang, Jieyi Cai, Jiaming Fu, Wensheng Zhang, Zhenyu Zheng, Jun Chu, Minjun Huang, Zhongmin Zhang, Liang Wang
View: Text | PDF

Mast cell activation by NGF drives the formation of trauma-induced heterotopic ossification

  • Text
  • PDF
Abstract

Soft tissue trauma can cause immune system disturbance and neuropathological invasion, resulting in heterotopic ossification (HO) due to aberrant chondrogenic differentiation of mesenchymal stem cells (MSCs). However, the molecular mechanisms behind the interaction between the immune and nervous systems in promoting HO pathogenesis are unclear. In this study, we found that mast cell-specific deletion attenuated localized tissue inflammation, with marked inhibition of HO endochondral osteogenesis. Likewise, blockage of nerve growth factor (NGF) receptor, known as tropomyosin receptor kinase A (TrkA), led to similar attenuations in tissue inflammation and HO. Moreover, while NGF-TrkA signaling did not directly affect MSCs chondrogenic differentiation, it modulated mast cell activation in traumatic soft tissue. Mechanistically, lipid A in lipopolysaccharide binding to TrkA enhanced NGF-induced TrkA phosphorylation, synergistically stimulating mast cells to release neurotrophin-3 (NT3), thereby promoting MSCs chondrogenic differentiation in situ. Finally, analysis of single-cell datasets and human pathological specimens confirmed the important role of mast cell-mediated neuroinflammation in HO pathogenesis. In conclusion, NGF regulates mast cells in soft tissue trauma, and drives HO progression via paracrine NT3. Targeted early inhibition of mast cells holds substantial promise for treating traumatic HO.

Authors

Tao Jiang, Xiang Ao, Xin Xiang, Jie Zhang, Jieyi Cai, Jiaming Fu, Wensheng Zhang, Zhenyu Zheng, Jun Chu, Minjun Huang, Zhongmin Zhang, Liang Wang

×

Cellular signatures in human blood track bone mineral density in postmenopausal women
Kaichi Kaneko, Jefferson Tsai, Deniece Meñez, Brian Oh, Andrew Junwoo Suh, Seyeon Bae, Masataka Mizuno, Akio Umemoto, Eugenia Giannopoulou, Takayuki Fujii, Yaxia Zhang, Emily M. Stein, Richard S. Bockman, Kyung-Hyun Park-Min
Kaichi Kaneko, Jefferson Tsai, Deniece Meñez, Brian Oh, Andrew Junwoo Suh, Seyeon Bae, Masataka Mizuno, Akio Umemoto, Eugenia Giannopoulou, Takayuki Fujii, Yaxia Zhang, Emily M. Stein, Richard S. Bockman, Kyung-Hyun Park-Min
View: Text | PDF

Cellular signatures in human blood track bone mineral density in postmenopausal women

  • Text
  • PDF
Abstract

Osteoclasts are the sole bone-resorbing cells and are formed by the fusion of osteoclast precursor cells (OCPs) derived from myeloid lineage cells. Animal studies reveal that circulating OCPs (cOCPs) in blood travel to bone and fuse with bone-resident osteoclasts. However, the characteristics of human cOCPs and their association with bone diseases remain elusive. We have identified and characterized human cOCPs and found a positive association between cOCPs and osteoclast activity. Sorted cOCPs have a higher osteoclastogenic potential than other myeloid cells and effectively differentiate into osteoclasts. cOCPs exhibit distinct morphology and transcriptomic signatures. The frequency of cOCPs in the blood varies among treatment-naive postmenopausal women and has an inverse correlation with lumbar spine bone density and a positive correlation with serum CTX, a bone resorption marker. The increased cOCPs in treatment-naive patients with osteoporosis were significantly diminished by denosumab, a widely used antiresorptive therapy. Our study reveals the distinctive identity of human cOCPs and the potential link between the dynamic regulation of cOCPs and osteoporosis and its treatment. Taken together, our study enhances our understanding of human cOCPs and highlights a potential opportunity to measure cOCPs through a simple blood test, which could potentially identify high-risk individuals.

Authors

Kaichi Kaneko, Jefferson Tsai, Deniece Meñez, Brian Oh, Andrew Junwoo Suh, Seyeon Bae, Masataka Mizuno, Akio Umemoto, Eugenia Giannopoulou, Takayuki Fujii, Yaxia Zhang, Emily M. Stein, Richard S. Bockman, Kyung-Hyun Park-Min

×

Identification of LRP1+CD13+ human periosteal stem cells that require LRP1 for bone repair
Youngjae Jeong, Lorenzo R. Deveza, Laura Ortinau, Kevin Lei, John R. Dawson, Dongsu Park
Youngjae Jeong, Lorenzo R. Deveza, Laura Ortinau, Kevin Lei, John R. Dawson, Dongsu Park
View: Text | PDF

Identification of LRP1+CD13+ human periosteal stem cells that require LRP1 for bone repair

  • Text
  • PDF
Abstract

Human periosteal skeletal stem cells (P-SSCs) are critical for cortical bone maintenance and repair. However, their in vivo identity, molecular characteristics, and specific markers remain unknown. Here, single-cell sequencing revealed human periosteum contains SSC clusters expressing known SSC markers, PDPN and PDGFRA. Notably, human P-SSCs, but not bone marrow SSCs (BM-SSCs), selectively expressed newly identified markers, LRP1 and CD13. These LRP1+CD13+ human P-SSCs were perivascular cells with high osteochondrogenic but minimal adipogenic potential. Upon transplantation into bone injuries in mice, they preserved self-renewal capability in vivo. Single-cell analysis of mouse periosteum further supported the preferential expression of LRP1 and CD13 in Prx1+ P-SSCs. When Lrp1 was conditionally deleted in Prx1-lineage cells, it led to severe bone deformity, short statue, and periosteal defects. By contrast, local treatment with a LRP1 agonist at the injury sites induced early P-SSC proliferation and bone healing. Thus, human and mouse periosteum contains unique osteochondrogenic stem cell subsets, and these P-SSCs express specific markers, LRP1 and CD13, with regulatory mechanism through LRP1 that enhances P-SSC function and bone repair.

Authors

Youngjae Jeong, Lorenzo R. Deveza, Laura Ortinau, Kevin Lei, John R. Dawson, Dongsu Park

×

Pharmacologic or genetic interference with atrogene signaling protects from glucocorticoid-induced musculoskeletal and cardiac disease
Amy Y. Sato, Meloney Cregor, Kevin McAndrews, Charles A. Schurman, Eric Schaible, Jennifer Shutter, Punit Vyas, Bhawana Adhikari, Monte S. Willis, Marjan Boerma, Tamara Alliston, Teresita Bellido
Amy Y. Sato, Meloney Cregor, Kevin McAndrews, Charles A. Schurman, Eric Schaible, Jennifer Shutter, Punit Vyas, Bhawana Adhikari, Monte S. Willis, Marjan Boerma, Tamara Alliston, Teresita Bellido
View: Text | PDF

Pharmacologic or genetic interference with atrogene signaling protects from glucocorticoid-induced musculoskeletal and cardiac disease

  • Text
  • PDF
Abstract

Despite their beneficial actions as immunosuppressants, glucocorticoids (GC) have devastating effects on the musculoskeletal and cardiac systems, as long-term treated patients exhibit high incidence of falls, bone fractures, and cardiovascular events. Herein, we show that GC upregulate simultaneously in bone, skeletal muscle, and the heart, the expression of E3 ubiquitin ligases (atrogenes), known to stimulate the proteasomal degradation of proteins. Activation of Vitamin D receptor (VDR) signaling with the VDR ligands 1,25D3 (calcitriol, 1,25-dihydroxyvitamin D3) or ED (eldecalcitol, 2β-(3-hydroxypropyloxy)-1,25-dihydroxyvitamin D3) prevented GC-induced atrogene upregulation in vivo and ex vivo in bone/muscle organ cultures and preserved tissue structure/mass and function of three tissues in vivo. Direct pharmacologic inhibition of the proteasome with carfilzomib also conferred musculoskeletal protection. Genetic loss of the atrogene MuRF1-mediated protein ubiquitination in ∆RING mice afforded temporary or sustained protection from GC excess in bone, or skeletal and heart muscle, respectively. We conclude that the atrogene pathway downstream of MuRF1 underlies GC action in bone, muscle, and the heart, and it can be pharmacologically or genetically targeted to confer protection against the damaging actions of GC simultaneously in the three tissues.

Authors

Amy Y. Sato, Meloney Cregor, Kevin McAndrews, Charles A. Schurman, Eric Schaible, Jennifer Shutter, Punit Vyas, Bhawana Adhikari, Monte S. Willis, Marjan Boerma, Tamara Alliston, Teresita Bellido

×

Identification of Postn+ periosteal progenitor cells with bone regenerative potential
Bei Yin, Fangyuan Shen, Qingge Ma, Yongcheng Liu, Xianglong Han, Xuyu Cai, Yu Shi, Ling Ye
Bei Yin, Fangyuan Shen, Qingge Ma, Yongcheng Liu, Xianglong Han, Xuyu Cai, Yu Shi, Ling Ye
View: Text | PDF

Identification of Postn+ periosteal progenitor cells with bone regenerative potential

  • Text
  • PDF
Abstract

Bone contains multiple pools of skeletal stem/progenitor cells (SSPCs), and SSPCs in periosteal compartments are known to exhibit higher regenerative potential than those in BM and endosteal compartments. However, the in vivo identity and hierarchical relationships of periosteal SSPCs (P-SSPCs) remain unclear due to a lack of reliable markers to distinguish BM SSPCs and P-SSPCs. Here, we found that periosteal mesenchymal progenitor cells (P-MPs) in periosteum can be identified based on Postn-CreERT2 expression. Postn-expressing periosteal subpopulation produces osteolineage descendants that fuel bones to maintain homeostasis and support regeneration. Notably, Postn+ P-MPs are likely derived from Gli1+ skeletal stem cells (SSCs). Ablation of Postn+ cells results in impairments in homeostatic cortical bone architecture and defects in fracture repair. Genetic deletion of Igf1r in Postn+ cells dampens bone fracture healing. In summary, our study provides a mechanistic understanding of bone regeneration through the regulation of region-specific Postn+ P-MPs.

Authors

Bei Yin, Fangyuan Shen, Qingge Ma, Yongcheng Liu, Xianglong Han, Xuyu Cai, Yu Shi, Ling Ye

×

S1P regulates intervertebral disc aging by mediating endoplasmic reticulum — mitochondrial calcium ion homeostasis
Bingjie Zheng, Xuyang Zhang, Xiangxi Kong, Jie Li, Bao Huang, Hui Li, Zhongyin Ji, Xiaoan Wei, Siyue Tao, Zhi Shan, Zemin Ling, Junhui Liu, Jian Chen, Fengdong Zhao
Bingjie Zheng, Xuyang Zhang, Xiangxi Kong, Jie Li, Bao Huang, Hui Li, Zhongyin Ji, Xiaoan Wei, Siyue Tao, Zhi Shan, Zemin Ling, Junhui Liu, Jian Chen, Fengdong Zhao
View: Text | PDF

S1P regulates intervertebral disc aging by mediating endoplasmic reticulum — mitochondrial calcium ion homeostasis

  • Text
  • PDF
Abstract

Mechanistically, S1P deficiency impeded COP II-mediated transport vesicles formation, which leads to proteins retention in the endoplasmic reticulum (ER) and subsequently ER distension. ER distension increased the contact between the ER and mitochondria, disrupting ER-to-mitochondria calcium flow, resulting in mitochondrial dysfunction and energy metabolism disturbance. Finally, using 2-APB to inhibit calcium ion channels and the senolytic drug dasatinib and quercetin (D + Q) partially rescued the aging and degenerative phenotypes caused by S1P deficiency. In conclusion, our findings suggest that S1P is a critical factor in causing IVDD in the process of aging and highlight the potential of targeting S1P as a therapeutic approach for age-related IVDD.

Authors

Bingjie Zheng, Xuyang Zhang, Xiangxi Kong, Jie Li, Bao Huang, Hui Li, Zhongyin Ji, Xiaoan Wei, Siyue Tao, Zhi Shan, Zemin Ling, Junhui Liu, Jian Chen, Fengdong Zhao

×

Sclerostin antibody corrects periodontal disease in type 2 diabetic mice
Hakan Turkkahraman, Shannan Flanagan, Tianli Zhu, Nisreen Akel, Silvia Marino, Dayane Ortega-Gonzalez, Xue Yuan, Teresita Bellido
Hakan Turkkahraman, Shannan Flanagan, Tianli Zhu, Nisreen Akel, Silvia Marino, Dayane Ortega-Gonzalez, Xue Yuan, Teresita Bellido
View: Text | PDF

Sclerostin antibody corrects periodontal disease in type 2 diabetic mice

  • Text
  • PDF
Abstract

Type 2 diabetes (T2D) is on the rise worldwide and is associated with various complications in the oral cavity. Using an adult-onset diabetes preclinical model, we demonstrated profound periodontal alterations in T2D mice, including inflamed gingiva, disintegrated periodontal ligaments (PDLs), marked alveolar bone loss, and unbalanced bone remodeling due to decreased formation and increased resorption. Notably, we observed elevated levels of the Wnt signaling inhibitor sclerostin in the alveolar bone of T2D mice. Motivated by these findings, we investigated whether a sclerostin-neutralizing antibody (Scl-Ab) could rescue the compromised periodontium in T2D mice. Administering Scl-Ab subcutaneously once a week for 4 weeks, starting 4 weeks after T2D induction, led to substantial increases in bone mass. This effect was attributed to the inhibition of osteoclasts and promotion of osteoblasts in both control and T2D mice, effectively reversing the bone loss caused by T2D. Furthermore, Scl-Ab stimulated PDL cell proliferation, partially restored the PDL fibers, and mitigated inflammation in the periodontium. Our study thus established a T2D-induced periodontitis mouse model characterized by inflammation and tissue degeneration. Scl-Ab emerged as a promising intervention to counteract the detrimental effects of T2D on the periodontium, exhibiting limited side effects on other craniofacial hard tissues.

Authors

Hakan Turkkahraman, Shannan Flanagan, Tianli Zhu, Nisreen Akel, Silvia Marino, Dayane Ortega-Gonzalez, Xue Yuan, Teresita Bellido

×

High-fat and high-carbohydrate diets increase bone fragility through TGF-β–dependent control of osteocyte function
Neha S. Dole, Andrés Betancourt-Torres, Serra Kaya, Yoshihiro Obata, Charles A. Schurman, Jihee Yoon, Cristal S. Yee, Vivek Khanal, Clarissa Aguirre Luna, Madeline Carroll, Jennifer J. Salinas, Elizabeth Miclau, Claire Acevedo, Tamara Alliston
Neha S. Dole, Andrés Betancourt-Torres, Serra Kaya, Yoshihiro Obata, Charles A. Schurman, Jihee Yoon, Cristal S. Yee, Vivek Khanal, Clarissa Aguirre Luna, Madeline Carroll, Jennifer J. Salinas, Elizabeth Miclau, Claire Acevedo, Tamara Alliston
View: Text | PDF

High-fat and high-carbohydrate diets increase bone fragility through TGF-β–dependent control of osteocyte function

  • Text
  • PDF
Abstract

Obesity can increase the risk of bone fragility, even when bone mass is intact. This fragility stems from poor bone quality, potentially caused by deficiencies in bone matrix material properties. However, cellular and molecular mechanisms leading to obesity-related bone fragility are not fully understood. Using male mouse models of obesity, we discovered TGF-β signaling plays a critical role in mediating the effects of obesity on bone. High-carbohydrate and high-fat diets increase TGF-β signaling in osteocytes, which impairs their mitochondrial function, increases cellular senescence, and compromises perilacunar/canalicular remodeling and bone quality. By specifically inhibiting TGF-β signaling in mouse osteocytes, some of the negative effects of high-fat and high-carbohydrate diets on bones, including the lacunocanalicular network, perilacunar/canalicular remodeling, senescence, and mechanical properties such as yield stress, were mitigated. DMP1-Cre–mediated deletion of TGF-β receptor II also blunted adverse effects of high-fat and high-carbohydrate diets on energy balance and metabolism. These findings suggest osteocytes are key in controlling bone quality in response to high-fat and high-carbohydrate diets. Calibrating osteocyte function could mitigate bone fragility associated with metabolic diseases while reestablishing energy balance.

Authors

Neha S. Dole, Andrés Betancourt-Torres, Serra Kaya, Yoshihiro Obata, Charles A. Schurman, Jihee Yoon, Cristal S. Yee, Vivek Khanal, Clarissa Aguirre Luna, Madeline Carroll, Jennifer J. Salinas, Elizabeth Miclau, Claire Acevedo, Tamara Alliston

×

HIF1 activation safeguards cortical bone formation against impaired oxidative phosphorylation
Mohd Parvez Khan, Elena Sabini, Katherine Beigel, Giulia Lanzolla, Brittany M. Laslow, Dian Wang, Christophe Merceron, Amato Giaccia, Fanxin Long, Deanne M. Taylor, Ernestina Schipani
Mohd Parvez Khan, Elena Sabini, Katherine Beigel, Giulia Lanzolla, Brittany M. Laslow, Dian Wang, Christophe Merceron, Amato Giaccia, Fanxin Long, Deanne M. Taylor, Ernestina Schipani
View: Text | PDF

HIF1 activation safeguards cortical bone formation against impaired oxidative phosphorylation

  • Text
  • PDF
Abstract

Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting Mitochondrial Transcription Factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes. The cortical bone, constituting the long bones' rigid shell, is sheathed by the periosteum, a connective tissue layer populated with skeletal progenitors that spawn osteoblasts, the bone-forming cells. TFAM-deficient mice presented with thinner cortical bone, spontaneous midshaft fractures, and compromised periosteal cell bioenergetics, characterized by reduced ATP levels. Additionally, they exhibited an enlarged periosteal progenitor cell pool with impaired osteoblast differentiation. Increasing Hypoxia-Inducible Factor 1a (HIF1) activity within periosteal cells significantly mitigated the detrimental effects induced by TFAM deletion. HIF1 is known to promote glycolysis in all cell types. Our findings underscore the indispensability of OxPhos for the proper accrual of cortical bone mass and indicate a compensatory mechanism between OxPhos and glycolysis in periosteal cells. The study opens new avenues for understanding the relationship between energy metabolism and skeletal health and suggests that modulating bioenergetic pathways may provide a therapeutic avenue for conditions characterized by bone fragility.

Authors

Mohd Parvez Khan, Elena Sabini, Katherine Beigel, Giulia Lanzolla, Brittany M. Laslow, Dian Wang, Christophe Merceron, Amato Giaccia, Fanxin Long, Deanne M. Taylor, Ernestina Schipani

×

Explainable Deep Learning and Biomechanical Modeling for TMJ Disorder Morphological Risk Factors
Shuchun Sun, Pei Xu, Nathan Buchweitz, Cherice N. Hill, Farhad Ahmadi, Marshall B. Wilson, Angela Mei, Xin She, Benedikt Sagl, Elizabeth H. Slate, Janice S. Lee, Yongren Wu, Hai Yao
Shuchun Sun, Pei Xu, Nathan Buchweitz, Cherice N. Hill, Farhad Ahmadi, Marshall B. Wilson, Angela Mei, Xin She, Benedikt Sagl, Elizabeth H. Slate, Janice S. Lee, Yongren Wu, Hai Yao
View: Text | PDF

Explainable Deep Learning and Biomechanical Modeling for TMJ Disorder Morphological Risk Factors

  • Text
  • PDF
Abstract

Clarifying multifactorial musculoskeletal disorder etiologies supports risk analysis and development of targeted prevention and treatment modalities. Deep learning enables comprehensive risk factor identification through systematic analysis of disease datasets but does not provide sufficient context for mechanistic understanding, limiting clinical applicability for etiological investigations. Conversely, multiscale biomechanical modeling can evaluate mechanistic etiology within the relevant biomechanical and physiological context. We propose a hybrid approach combining 3D explainable deep learning and multiscale biomechanical modeling; we applied this approach to investigate temporomandibular joint (TMJ) disorder etiology by systematically identifying risk factors and elucidating mechanistic relationships between risk factors and TMJ biomechanics and mechanobiology. Our 3D convolutional neural network recognized TMJ disorder patients through subject-specific morphological features in condylar, ramus, and chin. Driven by deep learning model outputs, biomechanical modeling revealed that small mandibular size and flat condylar shape were associated with increased TMJ disorder risk through increased joint force, decreased tissue nutrient availability and cell ATP production, and increased TMJ disc strain energy density. Combining explainable deep learning and multiscale biomechanical modeling addresses the “mechanism unknown” limitation undermining translational confidence in clinical applications of deep learning and increases methodological accessibility for smaller clinical datasets by providing the crucial biomechanical context.

Authors

Shuchun Sun, Pei Xu, Nathan Buchweitz, Cherice N. Hill, Farhad Ahmadi, Marshall B. Wilson, Angela Mei, Xin She, Benedikt Sagl, Elizabeth H. Slate, Janice S. Lee, Yongren Wu, Hai Yao

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 12
  • 13
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts