Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Autoimmunity

  • 314 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 20
  • 21
  • 22
  • …
  • 31
  • 32
  • Next →
Gut microbial metabolites alter IgA immunity in type 1 diabetes
Juan Huang, James A. Pearson, Jian Peng, Youjia Hu, Sha Sha, Yanpeng Xing, Gan Huang, Xia Li, Fang Hu, Zhiguo Xie, Yang Xiao, Shuoming Luo, Chen Chao, Florence S. Wong, Zhiguang Zhou, Li Wen
Juan Huang, James A. Pearson, Jian Peng, Youjia Hu, Sha Sha, Yanpeng Xing, Gan Huang, Xia Li, Fang Hu, Zhiguo Xie, Yang Xiao, Shuoming Luo, Chen Chao, Florence S. Wong, Zhiguang Zhou, Li Wen
View: Text | PDF

Gut microbial metabolites alter IgA immunity in type 1 diabetes

  • Text
  • PDF
Abstract

The incidence of type 1 diabetes (T1D) has been increasing among children and adolescents, which environmental factors including gut microbiota play an important role. However, the underlying mechanisms are yet to be determined. Here, we show that patients with newly diagnosed T1D displayed not only a distinct profile of gut microbiota associated with decreased short-chain fatty acid (SCFAs) production, but also an altered IgA-mediated immunity compared with healthy control subjects. Using germ free (GF) non-obese diabetic (NOD) mice, we demonstrate that gut microbiota from patients with T1D promoted different IgA-mediated immune responses compared with healthy control gut microbiota. Treatment with the SCFA, acetate, reduced gut bacteria-induced IgA response accompanied by decreased severity of insulitis in NOD mice. Our study provides new insights into the functional effects of gut microbiota on inducing IgA immune response in T1D, suggesting that SCFAs might be potential therapeutic agents in T1D prevention and/or treatment.

Authors

Juan Huang, James A. Pearson, Jian Peng, Youjia Hu, Sha Sha, Yanpeng Xing, Gan Huang, Xia Li, Fang Hu, Zhiguo Xie, Yang Xiao, Shuoming Luo, Chen Chao, Florence S. Wong, Zhiguang Zhou, Li Wen

×

Th17 reprogramming of T cells in systemic juvenile idiopathic arthritis
Lauren A. Henderson, Kacie J. Hoyt, Pui Y. Lee, Deepak A. Rao, A. Helena Jonsson, Jennifer P. Nguyen, Kayleigh Rutherford, Amélie M. Julé, Louis-Marie Charbonnier, Siobhan Case, Margaret H. Chang, Ezra M. Cohen, Fatma Dedeoglu, Robert C. Fuhlbrigge, Olha Halyabar, Melissa M. Hazen, Erin Janssen, Susan Kim, Jeffrey Lo, Mindy S. Lo, Esra Meidan, Mary Beth F. Son, Robert P. Sundel, Matthew L. Stoll, Chad Nusbaum, James A. Lederer, Talal A. Chatila, Peter A. Nigrovic
Lauren A. Henderson, Kacie J. Hoyt, Pui Y. Lee, Deepak A. Rao, A. Helena Jonsson, Jennifer P. Nguyen, Kayleigh Rutherford, Amélie M. Julé, Louis-Marie Charbonnier, Siobhan Case, Margaret H. Chang, Ezra M. Cohen, Fatma Dedeoglu, Robert C. Fuhlbrigge, Olha Halyabar, Melissa M. Hazen, Erin Janssen, Susan Kim, Jeffrey Lo, Mindy S. Lo, Esra Meidan, Mary Beth F. Son, Robert P. Sundel, Matthew L. Stoll, Chad Nusbaum, James A. Lederer, Talal A. Chatila, Peter A. Nigrovic
View: Text | PDF

Th17 reprogramming of T cells in systemic juvenile idiopathic arthritis

  • Text
  • PDF
Abstract

Systemic juvenile idiopathic arthritis (sJIA) begins with fever, rash, and high-grade systemic inflammation but commonly progresses to a persistent afebrile arthritis. The basis for this transition is unknown. To evaluate a role for lymphocyte polarization, we characterized T cells from patients with acute and chronic sJIA using flow cytometry, mass cytometry, and RNA sequencing. Acute and chronic sJIA each featured an expanded population of activated Tregs uncommon in healthy controls or in children with nonsystemic JIA. In acute sJIA, Tregs expressed IL-17A and a gene expression signature reflecting Th17 polarization. In chronic sJIA, the Th17 transcriptional signature was identified in T effector cells (Teffs), although expression of IL-17A at the protein level remained rare. Th17 polarization was abrogated in patients responding to IL-1 blockade. These findings identify evolving Th17 polarization in sJIA that begins in Tregs and progresses to Teffs, likely reflecting the impact of the cytokine milieu and consistent with a biphasic model of disease pathogenesis. The results support T cells as a potential treatment target in sJIA.

Authors

Lauren A. Henderson, Kacie J. Hoyt, Pui Y. Lee, Deepak A. Rao, A. Helena Jonsson, Jennifer P. Nguyen, Kayleigh Rutherford, Amélie M. Julé, Louis-Marie Charbonnier, Siobhan Case, Margaret H. Chang, Ezra M. Cohen, Fatma Dedeoglu, Robert C. Fuhlbrigge, Olha Halyabar, Melissa M. Hazen, Erin Janssen, Susan Kim, Jeffrey Lo, Mindy S. Lo, Esra Meidan, Mary Beth F. Son, Robert P. Sundel, Matthew L. Stoll, Chad Nusbaum, James A. Lederer, Talal A. Chatila, Peter A. Nigrovic

×

Serine/threonine phosphatase PP2A is essential for optimal B cell function
Esra Meidan, Hao Li, Wenliang Pan, Michihito Kono, Shuilian Yu, Vasileios C. Kyttaris, Christina Ioannidis, Noe Rodriguez Rodriguez, Jose C. Crispin, Sokratis A. Apostolidis, Pui Lee, John Manis, Amir Sharabi, Maria G. Tsokos, George C. Tsokos
Esra Meidan, Hao Li, Wenliang Pan, Michihito Kono, Shuilian Yu, Vasileios C. Kyttaris, Christina Ioannidis, Noe Rodriguez Rodriguez, Jose C. Crispin, Sokratis A. Apostolidis, Pui Lee, John Manis, Amir Sharabi, Maria G. Tsokos, George C. Tsokos
View: Text | PDF

Serine/threonine phosphatase PP2A is essential for optimal B cell function

  • Text
  • PDF
Abstract

Protein phosphatase 2A (PP2A), a serine/threonine phosphatase, has been shown to control T cell function. We found that in vitro–activated B cells and B cells from various lupus-prone mice and patients with systemic lupus erythematosus display increased PP2A activity. To understand the contribution of PP2A to B cell function, we generated a Cd19CrePpp2r1afl/fl (flox/flox) mouse which lacks functional PP2A only in B cells. Flox/flox mice displayed reduced spontaneous germinal center formation and decreased responses to T cell-dependent and T-independent antigens, while their B cells responded poorly in vitro to stimulation with an anti-CD40 antibody or CpG in the presence of IL-4. Transcriptome and metabolome studies revealed altered nicotinamide adenine dinucleotide (NAD) and purine/pyrimidine metabolism and increased expression of purine nucleoside phosphorylase in PP2A-deficient B cells. Our results demonstrate that PP2A is required for optimal B cell function and may contribute to increased B cell activity in systemic autoimmunity.

Authors

Esra Meidan, Hao Li, Wenliang Pan, Michihito Kono, Shuilian Yu, Vasileios C. Kyttaris, Christina Ioannidis, Noe Rodriguez Rodriguez, Jose C. Crispin, Sokratis A. Apostolidis, Pui Lee, John Manis, Amir Sharabi, Maria G. Tsokos, George C. Tsokos

×

Autoimmune inner ear disease patient–associated 28-kDa proinflammatory IL-1β fragment results from caspase-7–mediated cleavage in vitro
Shresh Pathak, Andrea Vambutas
Shresh Pathak, Andrea Vambutas
View: Text | PDF

Autoimmune inner ear disease patient–associated 28-kDa proinflammatory IL-1β fragment results from caspase-7–mediated cleavage in vitro

  • Text
  • PDF
Abstract

Interleukin-1β (IL-1β) is a key proinflammatory cytokine involved in the progression of many autoinflammatory and autoimmune diseases, including autoimmune inner ear disease (AIED). IL-1β inhibition has been shown to result in clinical hearing improvement in a small cohort of corticosteroid-resistant patients with AIED. Canonical processing of pro–IL-1β by caspase-1 generates an active 17-kDa fragment, capable of instigating a proinflammatory microenvironment. However, in response to LPS, PBMCs from patients with AIED uniquely express a 28-kDa IL-1β fragment, as compared with PBMCs from control subjects. We synthesized and compared the biologic activity of the 28-kDa fragment to the 17-kDa IL-1β product and the pro–IL-1 31-kDa protein. The 28-kDa IL-1β fragment induces IL-6, TNF-α, and CCL3 in PBMCs. Uniquely, only caspase-7 treatment showed a dose- and time-dependent increase in 28-kDa band generation. Mass spectrometry confirmed the putative caspase-7 cleavage site of pro–IL-1β, which was used to generate the 28-kDa fragment used for PBMC stimulation studies. Collectively, these results provide insight into the function of a poorly understood, processed 28-kDa form of IL-1β in patients with AIED that is uniquely generated by caspase-7 and is capable of activating further downstream proinflammatory cytokines. Further investigation may provide novel pharmacologic targets for the treatment of this rare disease.

Authors

Shresh Pathak, Andrea Vambutas

×

Integrated, multi-cohort analysis reveals unified signature of systemic lupus erythematosus
Winston A. Haynes, David James Haddon, Vivian Diep, Avani Khatri, Erika Bongen, Gloria Yiu, Imelda Balboni, Christopher R. Bolen, Rong Mao, Paul J. Utz, Purvesh Khatri
Winston A. Haynes, David James Haddon, Vivian Diep, Avani Khatri, Erika Bongen, Gloria Yiu, Imelda Balboni, Christopher R. Bolen, Rong Mao, Paul J. Utz, Purvesh Khatri
View: Text | PDF

Integrated, multi-cohort analysis reveals unified signature of systemic lupus erythematosus

  • Text
  • PDF
Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disease that follows an unpredictable disease course and affects multiple organs and tissues. We performed an integrated, multi-cohort analysis of 7,471 transcriptomic profiles from 40 independent studies to identify robust gene expression changes associated with SLE. We identified a 93-gene signature (SLE MetaSignature) that is differentially expressed in the blood of SLE patients compared to healthy volunteers; distinguishes SLE from other autoimmune, inflammatory, and infectious diseases; and persists across diverse tissues and cell types. The SLE MetaSignature correlated significantly with disease activity and other clinical measures of inflammation. We prospectively validated the SLE MetaSignature in an independent cohort of pediatric SLE patients using a microfluidic RT-qPCR array. We found that 14 of the 93 genes in the SLE MetaSignature were independent of interferon-induced and neutrophil-related transcriptional profiles that have previously been associated with SLE. Pathway analysis revealed dysregulation associated with nucleic acid biosynthesis and immunometabolism in SLE. We further refined a neutropoeisis signature and identified novel transcripts related to immune cells and oxidative stress. Our multi-cohort, transcriptomic analysis has uncovered novel genes and pathways associated with SLE pathogenesis, with the potential to advance clinical diagnosis, biomarker development, and targeted therapeutics for SLE.

Authors

Winston A. Haynes, David James Haddon, Vivian Diep, Avani Khatri, Erika Bongen, Gloria Yiu, Imelda Balboni, Christopher R. Bolen, Rong Mao, Paul J. Utz, Purvesh Khatri

×

Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies
Nickie L. Seto, Jose Jiram Torres-Ruiz, Carmelo Carmona-Rivera, Iago Pinal-Fernandez, Katherine Pak, Monica M. Purmalek, Yuji Hosono, Catia Fernandes-Cerqueira, Prateek C. Gowda, Nathan Arnett, Alexander Gorbach, Olivier Benveniste, Diana Gómez-Martín, Albert Selva-O'Callaghan, Jose C. Milisenda, Josep M. Grau-Junyent, Lisa Christopher-Stine, Frederick W. Miller, Ingrid E. Lundberg, J. Michelle Kahlenberg, Adam I. Schiffenbauer, Andrew L. Mammen, Lisa G. Rider, Mariana J. Kaplan
Nickie L. Seto, Jose Jiram Torres-Ruiz, Carmelo Carmona-Rivera, Iago Pinal-Fernandez, Katherine Pak, Monica M. Purmalek, Yuji Hosono, Catia Fernandes-Cerqueira, Prateek C. Gowda, Nathan Arnett, Alexander Gorbach, Olivier Benveniste, Diana Gómez-Martín, Albert Selva-O'Callaghan, Jose C. Milisenda, Josep M. Grau-Junyent, Lisa Christopher-Stine, Frederick W. Miller, Ingrid E. Lundberg, J. Michelle Kahlenberg, Adam I. Schiffenbauer, Andrew L. Mammen, Lisa G. Rider, Mariana J. Kaplan
View: Text | PDF

Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies

  • Text
  • PDF
Abstract

OBJECTIVES: Idiopathic inflammatory myopathies (IIM) are characterized by muscle inflammation and weakness, myositis specific autoantibodies (MSAs) and extramuscular organ damage. The role of neutrophil dysregulation and neutrophil extracellular traps (NETs) in IIM is unclear. We assessed if pathogenic neutrophil subsets (low-density granulocytes, LDGs) and NETs were elevated in IIM, associated with clinical presentation and MSAs, and their effect on skeletal myoblasts and myotubes.METHODS: Circulating NETs and LDGs were quantified and correlated with clinical measures. Specific MSAs were tested for their ability to induce NETs. NETs and neutrophil gene expression were measured in IIM biopsies. Whether NETs damage skeletal myoblasts and myotubes was tested.RESULTS: Circulating LDGs and NETs were increased in IIM. IIM LDGs had enhanced ability to form NETs. LDGs and NETs correlated with IIM disease activity and muscle damage. The serum MSA anti-MDA5 correlated with circulating and tissue NETs and directly enhanced NET formation. An enhanced neutrophil gene signature was present in IIM muscle and associated with muscle injury and tissue interferon gene signatures. IIM NETs decreased the viability of myotubes in a citrullinated histone-dependent manner. CONCLUSION: Dysregulated neutrophil pathways may play pathogenic roles in IIM through their ability to directly injure muscle cells and other affected tissues.

Authors

Nickie L. Seto, Jose Jiram Torres-Ruiz, Carmelo Carmona-Rivera, Iago Pinal-Fernandez, Katherine Pak, Monica M. Purmalek, Yuji Hosono, Catia Fernandes-Cerqueira, Prateek C. Gowda, Nathan Arnett, Alexander Gorbach, Olivier Benveniste, Diana Gómez-Martín, Albert Selva-O'Callaghan, Jose C. Milisenda, Josep M. Grau-Junyent, Lisa Christopher-Stine, Frederick W. Miller, Ingrid E. Lundberg, J. Michelle Kahlenberg, Adam I. Schiffenbauer, Andrew L. Mammen, Lisa G. Rider, Mariana J. Kaplan

×

Siponimod enriches regulatory T and B lymphocytes in secondary progressive multiple sclerosis
Qi Wu, Elizabeth A. Mills, Qin Wang, Catherine A. Dowling, Caitlyn Fisher, Britany Kirch, Steven K. Lundy, David A. Fox, Yang Mao-Draayer
Qi Wu, Elizabeth A. Mills, Qin Wang, Catherine A. Dowling, Caitlyn Fisher, Britany Kirch, Steven K. Lundy, David A. Fox, Yang Mao-Draayer
View: Text | PDF

Siponimod enriches regulatory T and B lymphocytes in secondary progressive multiple sclerosis

  • Text
  • PDF
Abstract

BACKGROUND. Siponimod (BAF312) is a selective sphingosine 1-phosphate receptor 1 and 5 (S1PR1, S1PR5) modulator recently approved for active secondary progressive multiple sclerosis (SPMS). The immunomodulatory effects of siponimod in SPMS have not been previously described. METHODS. We conducted a multi-centered randomized, double-blind, placebo-controlled AMS04 mechanistic study with 36 SPMS participants enrolled in the EXPAND trial. Gene expression profiles were analyzed using RNA derived from whole blood with Affymetrix Human Gene ST 2.1 microarray technology. We performed flow cytometry based assays to analyze the immune cell composition and microarray gene expression analysis on peripheral blood from siponimod-treated participants with SPMS relative to baseline and placebo during the first year randomization phase. RESULTS. Microarray analysis showed that immune-associated genes involved in T and B cell activation and receptor signaling were largely decreased by siponimod, which is consistent with the reduction of CD4+ T cells, CD8+ T cells, and B cells. Analysis done by flow cytometry showed that within the remaining lymphocyte subsets, there was a reduction in the frequencies of CD4 and CD8 naïve T cells and central memory cells, while T effector memory cells, anti-inflammatory Th2, and T regulatory (Treg) cells were enriched. Transitional Bregs (CD24hiCD38hi) and B1 cell subsets (CD43+CD27+) were enriched, shifting the balance in favor of regulatory B cells over memory B cells. The pro-regulatory shift driven by siponimod treatment included a higher proliferative potential of Tregs compared with non-Tregs, and upregulated expression of PD-1 on Tregs. Additionally, a positive correlation was found between regulatory T cells and regulatory B cells in siponimod treated participants. CONCLUSION. The shift toward an anti-inflammatory and suppressive homeostatic immune system may contribute to the clinical efficacy of siponimod in SPMS. TRIAL REGISTRATION. NCT02330965.

Authors

Qi Wu, Elizabeth A. Mills, Qin Wang, Catherine A. Dowling, Caitlyn Fisher, Britany Kirch, Steven K. Lundy, David A. Fox, Yang Mao-Draayer

×

Extensive intrathecal T cell renewal following hematopoietic transplantation for multiple sclerosis
Kristina M. Harris, Noha Lim, Paul Lindau, Harlan Robins, Linda M. Griffith, Richard A. Nash, Laurence A. Turka, Paolo A. Muraro
Kristina M. Harris, Noha Lim, Paul Lindau, Harlan Robins, Linda M. Griffith, Richard A. Nash, Laurence A. Turka, Paolo A. Muraro
View: Text | PDF

Extensive intrathecal T cell renewal following hematopoietic transplantation for multiple sclerosis

  • Text
  • PDF
Abstract

A recent study of AHSCT for active relapsing-remitting multiple sclerosis (RRMS) showed efficacy in preventing disease worsening. However, the immunologic basis for efficacy remains poorly defined. MS pathology is known to be driven by inflammatory T cells that infiltrate the central nervous system (CNS). Therefore, we hypothesized that the pre-existing T cell repertoire in the intrathecal compartment of active RRMS participants was ablated, and replaced with new clones following AHSCT. T cell repertoires were assessed using high-throughput TCRβ chain sequencing in paired cerebrospinal fluid (CSF) and peripheral blood CD4+ and CD8+ T cells from participants that underwent AHSCT, before and up to 4 years following transplantation. >90% of the pre-existing CSF repertoire in participants with active RRMS was removed following AHSCT, and replaced with clonotypes predominantly generated from engrafted autologous stem cells. Of the pre-existing clones in CSF, ~60% were also detected in pre-therapy blood, and concordant treatment effects were observed for clonotypes in both compartments following AHSCT. These results indicate that replacement of the pre-existing TCR repertoire in active RRMS is a mechanism for AHSCT efficacy, and suggest that peripheral blood could serve as a surrogate for CSF to define mechanisms associated with efficacy in future studies of AHSCT.

Authors

Kristina M. Harris, Noha Lim, Paul Lindau, Harlan Robins, Linda M. Griffith, Richard A. Nash, Laurence A. Turka, Paolo A. Muraro

×

TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells
Itay Raphael, Francisco Gomez-Rivera, Rebecca A. Raphael, Rachel R. Robinson, Saisha Nalawade, Thomas G. Forsthuber
Itay Raphael, Francisco Gomez-Rivera, Rebecca A. Raphael, Rachel R. Robinson, Saisha Nalawade, Thomas G. Forsthuber
View: Text | PDF

TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells

  • Text
  • PDF
Abstract

Multiple sclerosis (MS) is an autoimmune neuroinflammatory disease where the underlying mechanisms driving disease progression have remained unresolved. HLA-DR2b (DRB1*15:01) is the most common genetic risk factor for MS. Additionally, TNF and its receptors TNFR1 and TNFR2 play key roles in MS and its preclinical animal model, experimental autoimmune encephalomyelitis (EAE). TNFR2 is believed to ameliorate CNS pathology by promoting remyelination and Treg function. Here, we show that transgenic mice expressing the human MHC class II (MHC-II) allele HLA-DR2b and lacking mouse MHC-II and TNFR2 molecules, herein called DR2bΔR2, developed progressive EAE, while disease was not progressive in DR2b littermates. Mechanistically, expression of the HLA-DR2b favored Th17 cell development, whereas T cell–independent TNFR2 expression was critical for restraining of an astrogliosis-induced proinflammatory milieu and Th17 cell responses, while promoting remyelination. Our data suggest the TNFR2 signaling pathway as a potentially novel mechanism for curtailing astrogliosis and promoting remyelination, thus providing new insights into mechanisms limiting progressive MS.

Authors

Itay Raphael, Francisco Gomez-Rivera, Rebecca A. Raphael, Rachel R. Robinson, Saisha Nalawade, Thomas G. Forsthuber

×

Reciprocal regulation of Th2 and Th17 cells by PAD2-mediated citrullination
Bo Sun, Hui-Hsin Chang, Ari Salinger, Beverly Tomita, Mandar Bawadekar, Caitlyn L. Holmes, Miriam A. Shelef, Eranthie Weerapana, Paul R. Thompson, I-Cheng Ho
Bo Sun, Hui-Hsin Chang, Ari Salinger, Beverly Tomita, Mandar Bawadekar, Caitlyn L. Holmes, Miriam A. Shelef, Eranthie Weerapana, Paul R. Thompson, I-Cheng Ho
View: Text | PDF

Reciprocal regulation of Th2 and Th17 cells by PAD2-mediated citrullination

  • Text
  • PDF
Abstract

Dysregulated citrullination, a unique form of posttranslational modification catalyzed by the peptidylarginine deiminases (PADs), has been observed in several human diseases, including rheumatoid arthritis. However, the physiological roles of PADs in the immune system are still poorly understood. Here, we report that global inhibition of citrullination enhances the differentiation of type 2 helper T (Th2) cells but attenuates the differentiation of Th17 cells, thereby increasing the susceptibility to allergic airway inflammation. This effect on Th cells is due to inhibition of PAD2 but not PAD4. Mechanistically, PAD2 directly citrullinates GATA3 and RORγt, 2 key transcription factors determining the fate of differentiating Th cells. Citrullination of R330 of GATA3 weakens its DNA binding ability, whereas citrullination of 4 arginine residues of RORγt strengthens its DNA binding. Finally, PAD2-deficient mice also display altered Th2/Th17 immune response and heightened sensitivity to allergic airway inflammation. Thus, our data highlight the potential and caveat of PAD2 as a therapeutic target of Th cell–mediated diseases.

Authors

Bo Sun, Hui-Hsin Chang, Ari Salinger, Beverly Tomita, Mandar Bawadekar, Caitlyn L. Holmes, Miriam A. Shelef, Eranthie Weerapana, Paul R. Thompson, I-Cheng Ho

×
  • ← Previous
  • 1
  • 2
  • …
  • 20
  • 21
  • 22
  • …
  • 31
  • 32
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts