Protein phosphatase 2A (PP2A), a serine/threonine phosphatase, has been shown to control T cell function. We found that in vitro–activated B cells and B cells from various lupus-prone mice and patients with systemic lupus erythematosus display increased PP2A activity. To understand the contribution of PP2A to B cell function, we generated a Cd19CrePpp2r1afl/fl (flox/flox) mouse which lacks functional PP2A only in B cells. Flox/flox mice displayed reduced spontaneous germinal center formation and decreased responses to T cell-dependent and T-independent antigens, while their B cells responded poorly in vitro to stimulation with an anti-CD40 antibody or CpG in the presence of IL-4. Transcriptome and metabolome studies revealed altered nicotinamide adenine dinucleotide (NAD) and purine/pyrimidine metabolism and increased expression of purine nucleoside phosphorylase in PP2A-deficient B cells. Our results demonstrate that PP2A is required for optimal B cell function and may contribute to increased B cell activity in systemic autoimmunity.
Esra Meidan, Hao Li, Wenliang Pan, Michihito Kono, Shuilian Yu, Vasileios C. Kyttaris, Christina Ioannidis, Noe Rodriguez Rodriguez, Jose C. Crispin, Sokratis A. Apostolidis, Pui Lee, John Manis, Amir Sharabi, Maria G. Tsokos, George C. Tsokos
Increased PP2A expression and enhanced function in activated B cells or B cells from lupus-prone mice and SLE patients.