Fibrosis is characterized by excess ECM deposition and occurs in a variety of organ systems, resulting in reduced function and possible failure. Therapeutic strategies for limiting and preventing fibrosis are lacking, and drivers of this pathogenic response are not fully understood. In this episode, Manuel Mayr and colleagues used a proteomic approach to evaluate the effect of targeting microRNA-21 (miR-21), which has been implicated in the fibrogenic response. While inhibition of miR-21 did not markedly alter ECM deposition, reduction of miR-21 limited the release of TGF-β1 and other profibrotic factors from platelets. These results provide a previously unrecognized mechanism for the known antifibrotic effects of miR-21 inhibition.
Fibrosis is a major contributor to organ disease for which no specific therapy is available. MicroRNA-21 (miR-21) has been implicated in the fibrogenetic response, and inhibitors of miR-21 are currently undergoing clinical trials. Here, we explore how miR-21 inhibition may attenuate fibrosis using a proteomics approach. Transfection of miR-21 mimic or inhibitor in murine cardiac fibroblasts revealed limited effects on extracellular matrix (ECM) protein secretion. Similarly, miR-21–null mouse hearts showed an unaltered ECM composition. Thus, we searched for additional explanations as to how miR-21 might regulate fibrosis. In plasma samples from the community-based Bruneck Study, we found a marked correlation of miR-21 levels with several platelet-derived profibrotic factors, including TGF-β1. Pharmacological miR-21 inhibition with an antagomiR reduced the platelet release of TGF-β1 in mice. Mechanistically, Wiskott-Aldrich syndrome protein, a negative regulator of platelet TGF-β1 secretion, was identified as a direct target of miR-21. miR-21–null mice had lower platelet and leukocyte counts compared with littermate controls but higher megakaryocyte numbers in the bone marrow. Thus, to our knowledge this study reports a previously unrecognized effect of miR-21 inhibition on platelets. The effect of antagomiR-21 treatment on platelet TGF-β1 release, in particular, may contribute to the antifibrotic effects of miR-21 inhibitors.
Temo Barwari, Seda Eminaga, Ursula Mayr, Ruifang Lu, Paul C. Armstrong, Melissa V. Chan, Mahnaz Sahraei, Marta Fernández-Fuertes, Thomas Moreau, Javier Barallobre-Barreiro, Marc Lynch, Xiaoke Yin, Christian Schulte, Ferheen Baig, Raimund Pechlaner, Sarah R. Langley, Anna Zampetaki, Peter Santer, Martin Weger, Roberto Plasenzotti, Markus Schosserer, Johannes Grillari, Stefan Kiechl, Johann Willeit, Ajay M. Shah, Cedric Ghevaert, Timothy D. Warner, Carlos Fernández-Hernando, Yajaira Suárez, Manuel Mayr