Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Epithelial Gpr116 regulates pulmonary alveolar homeostasis via Gq/11 signaling
Kari Brown, Alyssa Filuta, Marie-Gabrielle Ludwig, Klaus Seuwen, Julian Jaros, Solange Vidal, Kavisha Arora, Anjaparavanda P. Naren, Kathirvel Kandasamy, Kaushik Parthasarathi, Stefan Offermanns, Robert J. Mason, William E. Miller, Jeffrey A. Whitsett, James P. Bridges
Kari Brown, Alyssa Filuta, Marie-Gabrielle Ludwig, Klaus Seuwen, Julian Jaros, Solange Vidal, Kavisha Arora, Anjaparavanda P. Naren, Kathirvel Kandasamy, Kaushik Parthasarathi, Stefan Offermanns, Robert J. Mason, William E. Miller, Jeffrey A. Whitsett, James P. Bridges
View: Text | PDF
Research Article Cell biology Pulmonology

Epithelial Gpr116 regulates pulmonary alveolar homeostasis via Gq/11 signaling

  • Text
  • PDF
Abstract

Pulmonary function is dependent upon the precise regulation of alveolar surfactant. Alterations in pulmonary surfactant concentrations or function impair ventilation and cause tissue injury. Identification of the molecular pathways that sense and regulate endogenous alveolar surfactant concentrations, coupled with the ability to pharmacologically modulate them both positively and negatively, would be a major therapeutic advance for patients with acute and chronic lung diseases caused by disruption of surfactant homeostasis. The orphan adhesion GPCR GPR116 (also known as Adgrf5) is a critical regulator of alveolar surfactant concentrations. Here, we show that human and mouse GPR116 control surfactant secretion and reuptake in alveolar type II (AT2) cells by regulating guanine nucleotide–binding domain α q and 11 (Gq/11) signaling. Synthetic peptides derived from the ectodomain of GPR116 activated Gq/11-dependent inositol phosphate conversion, calcium mobilization, and cortical F-actin stabilization to inhibit surfactant secretion. AT2 cell–specific deletion of Gnaq and Gna11 phenocopied the accumulation of surfactant observed in Gpr116–/– mice. These data provide proof of concept that GPR116 is a plausible therapeutic target to modulate endogenous alveolar surfactant pools to treat pulmonary diseases associated with surfactant dysfunction.

Authors

Kari Brown, Alyssa Filuta, Marie-Gabrielle Ludwig, Klaus Seuwen, Julian Jaros, Solange Vidal, Kavisha Arora, Anjaparavanda P. Naren, Kathirvel Kandasamy, Kaushik Parthasarathi, Stefan Offermanns, Robert J. Mason, William E. Miller, Jeffrey A. Whitsett, James P. Bridges

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts