Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Anti-LPS antibodies protect against Klebsiella pneumoniae by empowering neutrophil-mediated clearance without neutralizing TLR4
Taylor S. Cohen, Mark Pelletier, Lily Cheng, Meghan E. Pennini, Jessica Bonnell, Romana Cvitkovic, Chew-shun Chang, Xiaodong Xiao, Elisabetta Cameroni, Davide Corti, Elena Semenova, Paul Warrener, Bret R. Sellman, JoAnn Suzich, Qun Wang, C. Kendall Stover
Taylor S. Cohen, Mark Pelletier, Lily Cheng, Meghan E. Pennini, Jessica Bonnell, Romana Cvitkovic, Chew-shun Chang, Xiaodong Xiao, Elisabetta Cameroni, Davide Corti, Elena Semenova, Paul Warrener, Bret R. Sellman, JoAnn Suzich, Qun Wang, C. Kendall Stover
View: Text | PDF
Research Article Infectious disease Microbiology

Anti-LPS antibodies protect against Klebsiella pneumoniae by empowering neutrophil-mediated clearance without neutralizing TLR4

  • Text
  • PDF
Abstract

Initial promising results with immune sera guided early human mAb approaches against Gram-negative sepsis to an LPS neutralization mechanism, but these efforts failed in human clinical trials. Emergence of multidrug resistance has renewed interest in pathogen-specific mAbs. We utilized a pair of antibodies targeting Klebsiella pneumoniae LPS, one that both neutralizes LPS/TLR4 signaling and mediates opsonophagocytic killing (OPK) (54H7) and one that only promotes OPK (KPE33), to better understand the contribution of each mechanism to mAb protection in an acutely lethal pneumonia model. Passive immunization 24 hours prior to infection with KPE33 protected against lethal infection significantly better than 54H7, while delivery of either mAb 1 hour after infection resulted in similar levels of protection. These data suggest that early neutralization of LPS-induced signaling limits protection afforded by these mAbs. LPS neutralization prevented increases in the numbers of γδT cells, a major producer of the antimicrobial cytokine IL-17A, the contribution of which was confirmed using il17a-knockout mice. We conclude that targeting LPS for OPK without LPS signaling neutralization has potential to combat Gram-negative infection by engaging host immune defenses, rather than inhibiting beneficial innate immune pathways.

Authors

Taylor S. Cohen, Mark Pelletier, Lily Cheng, Meghan E. Pennini, Jessica Bonnell, Romana Cvitkovic, Chew-shun Chang, Xiaodong Xiao, Elisabetta Cameroni, Davide Corti, Elena Semenova, Paul Warrener, Bret R. Sellman, JoAnn Suzich, Qun Wang, C. Kendall Stover

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts