Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Inactivation of ABL kinases suppresses non–small cell lung cancer metastasis
Jing Jin Gu, Clay Rouse, Xia Xu, Jun Wang, Mark W. Onaitis, Ann Marie Pendergast
Jing Jin Gu, Clay Rouse, Xia Xu, Jun Wang, Mark W. Onaitis, Ann Marie Pendergast
View: Text | PDF
Research Article Cell biology Oncology

Inactivation of ABL kinases suppresses non–small cell lung cancer metastasis

  • Text
  • PDF
Abstract

Current therapies to treat non–small cell lung carcinoma (NSCLC) have proven ineffective owing to transient, variable, and incomplete responses. Here we show that ABL kinases, ABL1 and ABL2, promote metastasis of lung cancer cells harboring EGFR or KRAS mutations. Inactivation of ABL kinases suppresses NSCLC metastasis to brain and bone, and other organs. ABL kinases are required for expression of prometastasis genes. Notably, ABL1 and ABL2 depletion impairs extravasation of lung adenocarcinoma cells into the lung parenchyma. We found that ABL-mediated activation of the TAZ and β-catenin transcriptional coactivators is required for NSCLC metastasis. ABL kinases activate TAZ and β-catenin by decreasing their interaction with the β-TrCP ubiquitin ligase, leading to increased protein stability. High-level expression of ABL1, ABL2, and a subset of ABL-dependent TAZ- and β-catenin–target genes correlates with shortened survival of lung adenocarcinoma patients. Thus, ABL-specific allosteric inhibitors might be effective to treat metastatic lung cancer with an activated ABL pathway signature.

Authors

Jing Jin Gu, Clay Rouse, Xia Xu, Jun Wang, Mark W. Onaitis, Ann Marie Pendergast

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts